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ABSTRACT

The Smith-Purcell ééct has been widely studied since its theoretical prediction in 1942
and its fist experimental confination in 1953.The previous available models assume
electrons moving parallel to a grating surface and perpendicular to the grating rulings. In the
first chapterthe description of the Smith-Purcellfexft for electrons moving parallel to a
grating, at an arbitrary angle with respect to the grating rulings is exposed in the frame of ai
electromagnetic theary

The model is restricted to perfectly conducting surfaces, for which some of the modern
available techniques to solve the grating problem are adapted to the peculguratioh of
the incident &ld. These techniques are developed in the second chapter

In chapter three, the Smith-Purcell radiation produced by relativistic electrons with
enegy in the 1 to 100/eV range interacting with millimeter period gratings is calculated,
using the previously developed theorigése properties of the radiation are described and
possible applications are proposed.

In the fourth chapterthe GELINAfacility which was used to carry out Smith-Purcell
experiments is described.

In chapter fre, the Smith-Purcell experiments are descriiée: spectral and angular
distributions, the polarization and the dependence on the electrayy esfethe radiation
obtained by interaction of high egrelectrons of 20 to1D MeV with optical gratings in
various confyjurations are presented.




RESUME

L’ effet Smith-Purcell a été lgement étudié depuis la prédiction de son existence en
1942 et sa premiere comfiation expérimentale en 1953. Les modeles théoriques
précédemment existants supposent un électron se propageant parallelement a la surface
réseau de difaction et perpendiculairement aux traits du réseau. Dans le chapitre premier es
exposée dans le cadreutie théorie électromagnétique la description éédt Smith-Purcell
pour un électron se propageant parallélement a la surfaceréseau de difaiction avec un
angle arbitraire par rapport aux traits du réseau.

Le modele proposé est restreint au cas des surfaces parfaitement conductrices, po
lesquelles quelques techniques modernes de résolution du probleme de réseau ont été adap
a la confguration particuliere du champ incident. Ces techniques sont décrites dans le secon
chapitre.

Dans le chapitre trois, le rayonnement de Smith-Purcell produit par des électrons
relativistes dénegie 1 & 10(MeV en interaction avec des réseaux millimétriques est calculé
en utilisant les théories précédemment développées. Les propriétés du rayonnement sc
décrites et quelques applications potentielles sont proposées.

L’ accélérateur GELINAutilisé pour la réalisation des expériences Smith-Purcell est
décrit dans le chapitre quatre.

Dans le chapitre cing, les expériences Smith-Purcell sont décrites. Les distributions
spectrales et angulaires, la polarization et la dépendance par rapgoégid’ des électrons
du rayonnement obtenu par interactioréldctrons de 20 alDMeV avec des réseaux
optiques sont présentées.




INTRODUCTION

In 1942, FrancK1] predicted that a fast electron passing close tofedifve structure
would emit polarized light. But one had to wait till 1953 for tist ®xperimental confnation
obtained by Smith and Purcg®] who observed visible radiation from an about BeU
electron beam passing close to an optical grating. Independ8atigbury[3] had similar
ideas in 1949 and demonstrated generation of submillimeter and millimeter waves.

Several theories have been formulated to explain that the emitted light is strongly
polarized, the wavelength satisfying a simple dispersion relation involving the structure
period, the speed of the emitting electrons, and the angle of observation. Smith and Purce
proposed that the electromagnetic radiation is caused by the periodic motion of tjes char
induced on the grating surface by the electrons from the Bdasmexplanation was improved
by Salisbury{4] and Ishiguro andako [5], who considered the vibrating dipole formed by a
moving electron and its accompanying image, oscillating with respect to the periodic grating
surface. Using these models, one was able to explain the polarization of the emitted light, an
to derive the dispersion relation. So it has been rapidly planned to use the Smith-Fectell ef
as a sources in the millimeter to visible range for which tunable sources were hardly or no
available. In this optic, Bradcha] in the millimeter range, Ishiguro aifdko[5] in the near
infrared and Salisburj7] in the infrared, visible and ultraviolet carried out experiments to
build such generator3he results were however not very satisfying and it appeared that the
quantitative predictions were not correct. In fact it has been proved that these models are n
convenient for a rigorous theoretical analysis.

In 1960, Toraldo di Francid8] established the analogy between the Cherefoand
the Smith-Purcell radiation. In this approach, the electal fof the moving electron is
described by a set of evanescent plane waves, and the refraction (Cheréatipwoethe
diffraction (Smith-Purcell ééct) of these waves produces the outgoing radiafidms
approach permits in fact to link several phenomena involving electrons: the best known is o
course the Cherenkovfett, which has been extensively studied and which gave rise to
applications like Cherenkov detectors for high-velocity gadrparticlesTransition radiation
[10] is observed when a clymd particle crosses the interface between two media with
different optical constants. In this case, the electromagnelticdi the electron is reftted at
the surfaceThis efect has also been studied in great detail and is now widely used fgedhar
beam monitoring and diagnosiil]. X-ray production facilities using transition radiation are
also planned12]. Diffraction radiation is another example: a ¢eat particle passes close to




an obstacle like a wedge, or through a hole in a foil: the environment suddenly changes for th
moving particlg13]. If the perturbation is periodic, one observes Smith-Purcell radiation: the
electromagnetic éld of the electron is difacted by the structure (an optical grating for
example) and the periodicity of the phenomenon imposes a wavelength selection exactly ¢
happens with light difacted in a spectrometérhe difraction and interferencefetts are also
related to the Parametric X-ray product{dd], observed when an electron hits a crystal and
both the incident angle of the electron relative to a cristallographic axis as well as the
observation angle fulfthe Bragg condition for a spedfphoton engy and for the crystal
parameters.

In the case of the Smith-Purcellfesft, a particular difculty remained: the boundary
problem related to electromagnetic wavdrdition by a periodic device was not solved at this
time, except for some particular structures: He§$8] considered a planar grating with
periodic surface reactance, the boundary problem being reduced to solvingniéa sgBtem
of linear equation in which the spatial Fourier ¢ém&nts of the emitted radiation are the
unknowns. He pointed out the presence of resonances similaMimtiteanomalies in grating
theory [16]. The case of the plane strip grating was also solved rigorausilyg the same
technique17]. The WienerHopf techniqug18] allows to solve the boundary value problem
for a grating consisting of an infte array of conducting semi-infte screens of vanishing
thickness.A quantum theory of the Smith-Purcellfexft was also proposefll9]: the
polarization of emitted light and the dispersion law are predicted, but the quantitative
predictions are difcult. Bachheimef20] applied the Rayleigh method in the theory of the
reflection grating to the case of the Smith-Purcell radiafitve problem is then reduced to
solving an infinite system of linear equations with the spatial Fourieffiabefiits as unknowns.

It appeared howevgR1] that this method is not of general validity and even that one can not
say a priori whether the method is valid or not. Barnes and Dd&@€tkised a Green function
with the grating surface as boundamgpresented the grating ptefby its Fourier series and
expanded the Greenfunction as a power series in the groove deftle. method is then a
valid approximation when the wavelength iggmcompared to the local radius of curvature of
the grating surface. Perturbation methods were also[23¢d

Smith-Purcell radiation from structures other than gratings was also considered, like
emission from electrons passing through an Hel}. In that case, the diiictive structure is
not open and the treatment is similar to the one applied in electronic tube THeopmterest
of using a bunched beam in order to observe coherefemtseih the beam and by this way to
enhance the emission was pointed ¢26]. Smith-Purcell radiation from rfite-length
structures was also considered, experimenfaby and theoreticall§y27], but few results are
available.

The frst complete and rigorous treatment of the Smith-Purcell radiation has been given
by Van den Bay [28]. From the point of view oforaldo di Francig8], the evanescent waves
constituting the three-dimensional spatial Fourier spectrum of the movingeciiaminate
the diffraction grating[29]. The propagating redftted spectral orders constitute the Smith-
Purcell radiation. It is shown that the vectorial electromagnetic problem can be reduced to tw
two-dimensional scalar problems. Employing a Greémhction formulation of the problem,

Van den Bay derives integral equations of the second kind for the unknown functions on the
grating surfaceThe solutions are recombined to yield the complete vector solufioa.
method is valid for an arbitrary periodic ptefi For a particular type of grating, with




rectangular prole, Van den Begy [30] also derived a modal expansion method, using
Deryugins treatmenf31], to calculate the Smith-Purcell radiation produced by a linggehar
moving over the grating. Geometrical considerations show that in the plane perpendicular t
the grating rulings, the result is the same as for a poingjehso this approach can be used to
calculate the Smith-Purcell radiation from a point gkan this particular corguration[32].

The Van den Beay model is however limited to perfectly conducting surfadésy few
attempts have been made to predict Smith-Purcell radiation for diel@3}{i84] or metallic
gratings. BachheimgB5] used the Rayleigh hypothesis for shallow grating and was able to
predict peculiar behaviour of the radiated light, related with surface plasrides.
experiments he carried oli86] confrmed his predictionsA theory for low relativistic
electrons and emission near the plasma frequency of the grating matter was alsq3igrived

All the previous theories assume that the ghas moving perpendicular to the grating
rulings. Bachheimej20] showed that using a beam moving at a certain angle with respect to
the grooves (but still parallel to the grating surfacég@refan easy way to tune the emitted
radiation because the period as seen by the moving electron changes. No rigorous theory h
yet been written to treat this ca3ée purpose of this work is to develop such a theory

In the frst chapterthe starting point of view oforaldo di Francig8] is used in
conjunction with the method ofan den Bey [29] for perfectly conducting surfaces to
calculate the radiated intensitQualitative results are presented for metallic gratings. In the
second chaptesome of the now available theories to solve the grating problem are presented.

The third chapter is dedicated to the presentation of theoretical predictions of Smith-
Purcell radiation emitted by relativistic electrons in the range of 1 N®W00 MeV
interacting with several common types of gratingspractical Smith-Purcell source is
discussed.

A radiation physics program started 5 years ago at the Institute for Reference Material:
and Measurements (IRMM) at Geel by the upgrade of a photo-activation facility which was
installed in the early seventies, using bremsstrahlung radiation produced in a thick tungste
target. Small samples could be send to this facility for irradiation using a pneumatic system
After a proper time of irradiation and dose rate the samples were sent back to the laboratory f
analysisA study using 4MeV electrons has been carried out to characterize X-ray transition
radiation produced by electrons interacting witHeddnt kinds of radiatorgl2]. This study
lead to the decision of installing adarlaboratory dedicated to radiation physics outside the
target hall where a transition radiation source will be installéeoretical estimates show that
using the rejuvenated GELINAccelerator such a source could be orders of magnitude
stronger than conventional bremsstrahlung sources and that the brightness and the tunability
transition radiation can lead to aresfive tool for surface and interface physithe use of
Smith-Purcell radiation was suggested by artdki and will be foreseen in the new laboratory
At the GELINA facility, which is described in chapter fourxperiments using electrons
interacting with a grating have been carried dbe results of these experiments are presented
in chapter fre.




CHAPTER1  Theoretical description of the
Smith-Purcell dect

The Smith-Purcell radiation emitted by electrons moving parallel to a periodic surface
has been widely studied, either from the theoretical or the experimental point of views. Severe
theories have been developed, among which the electromagnetic theory propdaedien
Berg [29] proved to fi best with experimental data, as shown by Gateal. [38] who
compared dierent modelsThis theory assumes however electrons moving perpendicularly to
the grating rulings. In the next paragraphs, an extension of the model taking into account a
arbitrary tilting angle is being developed.

1.1 Formulation of the problem

1.1.1 The field of the moving electon

Figure 1.1 gives the geometry of the cogiiration of a Smith-Purcell experimeithe
electric point chage is moving in vacuum, parallel to a esfiion grating with an electrically
perfect conducting surfac&he grating is periodic in the x direction of a cartesian coordinate
system, the y direction being parallel to the grating rulings and the grating top plane lies in the
(x-y) plane.The chage moves along a trajectory z=zonst and¥, is the angle between the
x axis and the projection of the trajectory onto the (x-y) pldime electron moves with
constant velocityw, = vocosW¥,i, +vgsinW,i,.
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FIGURE 1.1: Configuration of a Smith-Purcell experiment.

~ Similarly to Van den Beay [29], the felds of the moving chge Ei:Ei(x,y,z,t),
H'=H'(x,y,z,t) are represented by Fourier integrals:

E'(x,y,zt) = (2n)‘ZJ'de' E'(x, zB, w) exp (iBy — iwt) dB
D (1.1)

H' (x,y,z1) = (2n)‘2J'de'Hi(x, B, w) exp (iBy — iwt) dB

Since the &lds are real and only positive valuesupfire considered, Eqél.1) are
rewritten as:

E(xy, 21 = (2r2) "ReJdw [ E (x, 2B, 0) exp (iBy — iot) dB"
%0 :[" - (1.2)

o]

H (xy,2 1) = (2r2) "Reddw [ H' (x, zB, w) exp (iBy - iwt) dB=
i) :




The Fourier components satisfy the Maxwell equations:

(O+ipiy) xH' +iwe E =3
. ) (1.3)
(O+iBiy) xE' —iwp,H' =0

with O = d.i, +0,i, andJ = J(x, z, w) being the Fourier transform of the current
density distribution:

J(X zZB w = IdtIJ(x, Y, z, t) exp (-iBy +iwt) dy (1.4)

The chage moves in the plane zgawith velocity v, = vocosW,i, +VvgsinW,iy.
Therefore, the electric-current density is written as:

J(XY,zt) = qvycos¥ o (x—vycos¥, t,y—vysinW t, z-2y) ix

+QVpsinW, 0 (x —vgycosW,t, y —vysinW t, 2 - z) iy (1.5)

in which g=-e is the electron chge. From Egs(1.4) and (1.5), J(X, z,B, w) is
obtained as :

X

J (X, 2B, w) = qd(z-zyexp((iw=ifvysin¥,) VOTSHJl)ix
+08(z - Zg)tanW exp ( (iw - iBv,sinW,) \/Occ))(sLIJl) i,
(1.6)
The Maxwell equations are expressed for each components as:
iBH, -0, H, +iweE, = J, (1.7)
oH,-0H,tiweE, = J (1.8)
0,H, —iBH, +iwe E, = 0 (1.9)
and
iBE,-0,E, —iwpyH, =0 (1.10)
0,E,~0,E,—iwpsH, =0 (1.11)
0,E, —IBE,—iwpgH, = 0 (1.12)

~ Through Egs( 1.7) - (1.12) the x and z components of the FouriefdivectorsE' and
H' can be expressed as functions of tieimndH!., components (from now on, when there is
no possible confusion, afd A(x,z,3,w) will sometimes be simply writtef).




Furthermore,Ei and H! satisfy the two-dimensional Helmholtz equatiofs. obtain
these equations, the formulat (rot) = grad (div) — A is applied to the Maxwell equations.

For Hi, with divH' = 0 the following equation is obtained:
(-02-02+ B H' +iwejiopgH' = (O +iBiy) xJ (1.13)
which gives for the y component:
(02+02) Hy + (K3 =B H, = -0,

y (1.14)

with kg = w,/c,. For the y component cEi, with divE' = OXEL+ i[3Eiy+ainZ and
combining with the Maxwell equations, the following expression is obtained:

iwe (3,E, +iBE, +0,E) = 0,J,+ipJ,
Applying rot (rot) = grad(div) — A to the Maxwell equations gives e
grad (divE') - AE' —iwp, (J - iwe,E) =0 (1.15)

So that for the y component, after substitutiordiofE’ by the expression derived above,
the equation is:

(02+02)E, + (kg— B E, = —iwpyd, + QEO (8,3, +iBJ,) (1.16)

We obtain the solutions of these equations as:

: 1 . . .
Hy = ~5a05ign (2 29) [exp (iagx +iyg|z - Zq) (1.17)
i i i
E, = E1, +E2) (1.18)
with
1/2
1 Hod "B % : :
El =Zqg-——- = —Cexp(iaXx+iy,z—2z)
Yy 2 EEOD kOyO 0 0‘ 0‘
2
i 1 .0 B° O : :
E2, = Z—VOqD— u0w+w—somtanwlexp(laox+|y0\z—zo\) (110
in which:
0 vpcos¥, (1.20)

1/2 1/2
Yo=i(02+B%-kd)  with (aZ+pB°-K) =20




As a consequence of the limited speed of the electgm,v, and ag+[32>k02.
Therefore,yp is imaginary and Eqg.1.17) and( 1.19) represent evanescent plane waves
decaying exponentially in the direction away from the trajectory plang krabsence of any
perturbing device, the free electron moving in empty space does not radiate. If a perturbation |
applied to this &ld, evanescent waves can become propagative, as in the Cerefiekbdv ef
when the waves are refracted by a medium of index n. If the electron moves close to a gratin
the evanescent waves ardrditted by the grating and give rise to propagatingceftd waves
which constitute the Smith-Purcell radiatidrherefore, the calculation of the Smith-Purcell
spectra is reduced to the calculation of the amplitudes of tfraaiéd waves, a problem
referred to as th@rating problem, and may be solved by the same techniqliés. only
difference is the nature of the incoming plane wave, which is in this case evanescent.

1.1.2 The reflected feld

The refected feld is given byE'= E - E' andH'= H - H, with E=E(x,y,z,t) and
H=H(x,y,z,t) being the totaldld above the gratinghese reicted felds are also expanded as
Fourier integral€'(x,z,8,w) andH" (x,z3,w) which satisfy the source-free Maxwell equations

(O+iBi,) xH" +ioe E =0
(1.21)
(O+iBiy) xE"—iwpyH" =

and a boundary condition at the surface. For a perfectly conducting surface this boundar
condition is written as:
nx (E+E" =0 (1.22)
in whichn is the unit vector normal to the surface pointing into it (spedil.l).

As for the incident &ld, from the Maxwell equations one can show that the x- and z-
components of the electric and magneticet#id felds can be expressed in termssyfand
H! . Neither the Helmholtz equations nor the boundary conditions lead to a coupling betweer
E, and H,, and the three-dimensional vectorial problem can be separated into two scalal
problems of two dimensions called the two fundamental cases of polarization, viz. the E-
polarization and the H-polarization.

For the E-polarization cask#0 , H,=0 the Helmholtz equation for the mdted feld
E, is:
2
(95+02) E + (kg—B)E}, = 0 (1.23)
with the boundary condition for the totaglil on the surface of the grating:
E, =0 (1.24)

For the H-polarization case, whetig#0 andg=0 the refécted feld H; satisfes:

(02+02)Hl + (k=P H) = 0 (1.25)

10



The total feld satisfes the boundary condition:
nH, =0 (1.26)

From physical considerations the existence of a solution is assumed and a supplement
condition is introduced: the refited feld must be made up of outgoing waves, propagating
away from the grating and must be bounded for «. This is called the radiation
condition[39].

Let Ey(x z,B, w) andH! y (% Z;B, w) be solutions for the reftted felds. It is straight-
forward to show that these solutions are unique. Moredwarauseexp (—id X) E' and
exp (-ia x)HI are periodic in x and the boundary condition is also perlodlc in X, the
quantltlesexp =0 X) Er andexp (-iax) EIr are also periodic in X'hey are represented as
Fourier series and the red':lted felds are ertten as:

E, (% zB w) = > Ey (2B, ) exp (ia x)

e (1.27)
Hry(x, ZBw) =y H;,,n(z;B,w)exp(ianx)
n=-ow
with:
a, = a0+2nn/D (1.28)

These expressions are inserted in the Helmholtz equations.OR@< o the
orthogonality of the functionexp (ia, x) on an intervak, <x<x, +D gives:

02E, , (zB. w) +VE, (zB w) =0 .
O%HY, . (zB, w) +VHY,  (zB,w) =0 |

with:
y2 = kj—pB%-a (1.30)
Above the grating, the radiation condition obliges to consider only the solutions:

E) (zB, @) =E}, , (B, ) exp(iy,2)

(1.31)
Hy,n (2:B. @) = Hy (B, ) exp (i,2)
with Re(y ) =20 and Im(y,) = 0. From the mathematical point of viethe solutions
mvolvmg an exp( iy,2) dependence are also valithey have to be rejected, because for
y > 0 they would represent waves propagating into the grating an;ﬁ fod andz - o« the
amplltude of the wave would become mitfe.




Then the difracted feld above the grating can be written as amitgfisum of outgoing
progagative or evanescent plane waves:

E;(x,z;B,w) = Z E;,’n(B, w) exp(ia x+iy 2)

n=-ow
- for0<z<oo (1.32)
H (X zB @) = % H{ (B, w)explia x+iy,2)
n=-o
in which a_=a,+2m/D and y, = (KX-B2-a?)"? with Refy)=0 and

Im(y,) = 0.

It seems that Lord Rayleigf#0] was the fist who used these expansions for the
“classical” diffraction of radiation in spectroscapVherefore, Eqs(1.32) are called the
“Rayleigh expansions”.

1.1.3 Solution of the grating problem

The incident #ld generated by a moving electron has been calculdted:alculation of
the Smith-Purcell radiation is a special case dfatifion by a grating. It is worthwhile to note
that the validity of the Rayleigh expansion has been established ol ok o because the
differential equation systeinl.29) has been proved only in this part of the space. In other
terms, except for the boundary conditions, no information aboutelddriside the grooves of
the grating is available up to now

On the other hand, the demonstration of the Rayleigh expansion does not refer to th
boundary conditions. It is valid whatever the grating a8, even for non-analytic prédi
like semi-infnite screens of vanishing thickness, and whatever the grating material is
(perfectly conducting surface, metallic or dielectric material). Only the methoddaHe
value of the Rayleigh coetients has to be adapted to the grating peculiarities.

The next step is to solve this “grating problem” in order id the codfcients of the
Rayleigh expansions giving the esfted feld above the grating. For the moment, no details
will be given for this part of the problem, which will be explained in detail in the chapter 2. In
the following it is assumed that given thefeliént parameters for the electron (trajectory
speed) and the grating geomettige grating problem has been solved and the Rayleigh
coeficients are known.

1.2 The Smith-Purcell spectra

In practice, a detector will always be placed at a distance from the grating ngesh lar
than the distance between the electron and the grating, than the grating period, andgeruch lar
than one wavelengthThis means that neither the evanescesit fof the electron hitting
directly the detector will be detected, nor the evanescent waves of the Rayleigh expansiol

12



This simply means that only the faglfl will be detectedl'hen, the Smith-Purcell radiation is
made up of the emging propagating waves, i.e. those waves for whfy,) = 0.

Therefore, one must have:
(1.33)

24+ B2 < K2
af+ B <ky

As a frst consequence, for propagative waves the paranfieter restricted to

—ko< B <Kky. Then itis easy to see frof1.20) thata , > kK.

Sincea, = a,+2m/D andy? = kj—B?- a2, only some of the negative orders n<0

0
from the Rayleigh expansions are propagative and contribute to gpetira. Figl.2 gives a
simple graphical illustration of the condition for a wave of spectral order -1 to be propagative

by constructing the intersection between the plane described by E&6), ( 1.28) and the

cone described by EQ1.33):

an2+52 < k02

Afo
A

R /
r I
| /
| / n=-
/
| /
| /
| l
| l
| /
/ " "4
/ / “
l P
I _ _ _ — —_—
L - an=(kgCq Vo~ BvgsinW;)/vgsin®W; + 2m/D

B
FIGURE 1.2 : Graphical construction illustrating the condition for a diffracted wave to be
propagative fordiffraction order n=-1.
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First, waves resulting from the ftdction of an incident wave withxied parameterk,,
and 3 will be considered. It is then natural to defia set of angles of emgence(®,0,) in
relation to the quantities,,3,y, such that:

a, = -kysin®sin®@
B = kocosd (1.34)
Y, = KoSin®coso

with —TE/ZSOnST[/ZandOSCDSTT

This set of angles is useful to understand one peculiar aspect of the Smith-Pleatell ef
For an incident wave with parametdgsag,B,yo the corresponding propagative fcitted
waves with parameters,,3,y, are located on a cone. Fig3illustrates the construction of the
emeqging waves for the diérent difraction orders nThe Smith-Purcell ééct is a case of
conical difraction. When using conical difaction mounting in spectroscopiyhe parameters
of the incident wavdk,0,B,yg are fked by the experiment. In the Smith-Purcell case, for a
fixed ky all values of-k,< B <k, are possibleThis means that for each value ®fthere
corresponds one cone for thefelient orders of difaction.

Direction of observation

<V

[o ir O_s [o a_3 (o ) (o g} Qo
<>
21D

FIGURE 1.3: The direction of emergence of a radiating wave of orden in the ©,,®)
reference frame.
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The wavelengtih = 21/k, of the A" order is given by the dispersion relation:

Db
ncos.LIJ1

(Co/ Vo — cosPsin¥, — cosW, sind®sinb ) (1.35)

Considering waves withxed parameterg(the parameter,ay andygp being free), this
relation can be simpl#id introducing angles of engance @,,,¢,,) with:

a, = kg (cos¥, cosB_ - sin¥, sinb _sing )
B =Kk, (sinLIchoﬁn + coslilsinGnsind)n) (1.36)
Y, = kosinB_cosp
with 0<6 <mand-v/2<¢ <1/2

From Egs.(1.20), (1.32) and (1.36) the following relation is obtained for the
wavelength:

Db
ncosLIJ1

(co/ Vo= co)) (1.37)

Fig. 1.4 gives a geometrical construction of the egireg waves in this new reference
frame. In the drawing, the considered direction of observation is characteriped:ity

AZ A2
y |
| Direction of observation
[~
~N
| ~
| /I
| /
// |
m |
/ |
o, | /
/ /l -
L-"
—_— - ~ |
- ~
S i W, N
— >

FIGURE 1.4 : The direction of emergence of a radiating wave of orden in the ©,,9,)
reference frame.

15



This shows that radiation of constant wavelength is emitted along a cone of a@erture
the axis being the projection of the electron trajectory onto the (x-y) plane. Rotating the grating
around the z axis (i.e. changing the angllg changes the apparent grating period seen by the
electron and EqQ(1.37) shows that continuous wavelength tuning is possible without
changing the electron speed, nor the direction of observation contrary to Smith-Purcel
radiation produced by electrons moving perpendicular to the grating r{2iigg20].

In previous calculations of the Smith-Purcell radiatj@f] a different set of angles
(Nn» ¢;)) was used for the enwng waves. Figuré.5 gives a geometrical construction of the
emeging wavesWith this set of angles, one has:

a, =Kkgysinn
B = kgcosn sing (1.38)
Y, = kocosncos(

with -T/2<n_<mw?2and-1/2<{ <12

The dispersion relation in this reference frame is given by:

—n)\o Co ) . w
D _vocoqul sinn - cosn sin( tan¥, (1.39)

Rewriting these relations for the particular case = 0 gives the well known
dispersion formula given byan den Beay and other authors:

-D )
A= e (Co/ Vo = sinn ) (1.40)
AT~
AT~
A? 71 ~—_ o .
. ~___ Direction of observation
/ I
/ / |
/ /
/ ;]
/ / |
/ / !
fo
/
Cn / I
/o,

>
>
X

FIGURE 1.5: The direction of emergence of a radiating wave of orden in the ({,,Nn)
reference frame. In this example),=0.
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1.3 Some pioperties of the Smith-Puicell spectra

1.3.1 Lemma

Before calculating the power radiated due to the Smith-Purcell mechanism some
important results will be established, which will be useful to check the results obtained wher

solving the grating problem.

Let S be a periodic perfectly conducting surface with period D, describead=bf/(x) .
Let U and U’ be two functions satisfying the Helmholtz equation and one of the boundary

conditions( 1.24), ( 1.26).

02U +k3U = 0
when f(x) <z (1.41)
02U +k3U' =0

As a consequence:

U'0°U-UD0%U" = 0 when f(x) <z (1.42)

Applying the two dimensional Greentheorem to a domain S inside the closed contour
C described in Fidl.6, the following equation is obtained:

I{(UDZU’—U'DZU)dS = ‘f{U(n [OU') -U'(nDU)}ds = 0 (1.43)

I —

N

x1+D

%

L
NE
5 —>_
I3

X
=
S 4

FIGURE 1.6 : Domain to which Green’s theorem is applied.
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Taking into account the boundary conditions, the contribution framthe integrals in
equation( 1.43) vanishes.

On account of the periodicity &kxp (-iaX) E, andexp (-iax) H, , the contributions
from L4 and L, to the integra( 1.43) cancel.

As a consequence, only the contribution frogrémains in the contour integration:

X, +D
I {Uo,U"-U'0,U} dx = 0 when (0<z<z,) (1.44)
Xy

This lemma is useful in demonstrating some properties of the Smith-Purcell
radiation[29][39].

1.3.2 Two complementay experiments

Let us consider the two following Smith-Purcell experiments described od.Fighe
electron moves with a speeg = vycosW,i, +vysinW, i in the frst case and with a speed
V'y = —Vg in the second casall other parameters remain the same.

The electric ®ld above the grating is given in thesticase by:

_ 1 trod’?B %
E, = éqD?o Ko Yo Cexp (iagx =iy, (2-2))
q O B 0 i . _
+2—yo 0 Llooo+—0Dtan\P exp(iagx =iy, (z2-z)) +n:z_ooE;’nexp(|anx+|ynz)
when (0<z<z,) (1.45)
z y , ,
4 N
e Vo v,
/Zo — — /ZO ¢ _ _—

FIGURE 1.7 : Two complementaly Smith-Purcell experiments.
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The magnetic éld is written as:

qexp(lux iYg(z=2)) + Z H nexp (ia x+iy,2)

n=—co

when (0<z<z)) (1.46)

NI =

In the second case, it is straight-forward to show that éhdsfiabove the grating are
expressed as:

1 H Dl/ZB a,
OD k—y— Cexp (i, x =iy, (2-2p))

backEy

]

T 2
q O (B)°O TSR ‘ o
_2Vo' 0 How + wE, DtanltJlexp(m(0 X=1Yy' (2- 7)) +mzz_mbaCkEy’ mEXp (ia 'x+iy 'z)

when (0<z<zy) (1.47)

[oe]

H :—éqexp(m(Ox—ly0 (z-2z5)) + Z backH;‘mexp(lamXHsz)

back 'y
m= —o
when (0<z<z)) (1.48)
with o) = (—0—B'vesinW,) / (vocos¥,) andy, = i[(a,)%+ (B)* -k

and witha ' = a, +2mm/D and (y,/)? = k- (B)2- (a.')? with Re(y )20
andIm(y,) 2 0.

For clarity, the following quantities are introduced:

_1 tod”B p?
K=34 EoDl k ZqD Ho® oosODtaan
(1.49)
1 o’ B 1 0 (B) %0
K' = éq —D k— 2qD Mo+ — . DtanLP

1.3.3 Powerrelations

The relation( 1.44) is applied fist to the coupleiE E y) and (H H y) and then to the
couples (i, backEy) and (back ,backH ) . Taking |nto account that Whe,r;1 is real yn is
equal toy and whery,_ is |mag|naryy IS equal to-y,, the following relations are obtained

for the frst experlment

E,, nEy.nY,, = 2K [Re (Ey, o&xp (iYyZ)))
re
"o _ (1.50)
Hy n y nYn = ~d DQe(Hy oYoXP (1Yy2Z0) )

realy,
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In the second case, one obtains:

= [ ] H ]
; backE;, m DDackEy, mym =2K'[Re (backE;, OeXp ('Vo ZO) )
reary,,
(1.51)

r b 1 — r [} H [}
; backHy, m QJackHy, m¥m — @ ERe(backHy, oYo €XP (Iyo ZO))
re

m

In the “classical” grating problem, a grating is illuminated by an incident plane wave,
and one calculates the distribution of thdrdited waves and their intensitiésfirst test to
check the validity of the obtained results is to apply theggnewnservation theorem: the sum
of the enegies of the difacted propagating waves has to be equal to thggoéthe incident
wave.

In the special case of the Smith-Purcellfrdiftion, such a theorem does not hold,
because the waves emitted by the moving electron are evanéloenelations given by
equation( 1.51) constitute the equivalent of the egyeibalance criteriofdl] obtained when
applying the conservation of eggrin spectroscopynd they can be used to test the validity of
the results.

1.3.4 Reciprocity theorem for the zeo order

Applying the lemma (1.44) to the couples (backEy(—B, w);E, (B, w)) and
(packHy (=B, @) ;H, (B, w)) and noting that:
X, +D 5
2Tt
I eXp(Iﬁ (n+m)x) = 6n+m,0
Xo

(B'=-B) O (0o, =-ay)and(y, =Y, and(K' = -K) (1.52)

(=m=n) 0 (a_'=-a.)

(-m=n) 0 (Y., =V,)

the following relations are obtained:

backE;, o(~B w) = _E;/, o (B, w)

backH)r/, o(-B ) = _H;, 0o (B, w)

(1.53)

These relations constitute the equivalent of the reciprocity theorem applied to the zerc
order of difraction in spectroscopytl]. The main diference is that in our case the zero order
is evanescent, while it is propagative when using the grating for spectroscopy

1.3.5 Reciprocity theorem for the -18t order

An interesting consequence of the above property is obtained by considering a
wavelength for which there is only one propagativefditted order

20



The combination of the relationg1.50), (1.51) and ( 1.53) gives the following
relations:

= —r
ESrh -1 EE;’ -1 (B w) = backE;, 1 E1:)::1ckEy, 1 (=B, w) (158)
H;’, -1 [ﬁ; 1 (B w) = backH;/, 1 Q)ackﬁ;, 1 (=B w)

which means that the amplitude of these waves are the same in the two experiment:
configurations described in Fid.7. This result is well known in opticdgl1], but was never
mentioned in the case of the Smith-Purcell radiation.

1.4 Relation between radiation loss and the Poynting vector

1.4.1 Mechanical work

In this section the radiation loss when the electron has traversed one period D of the
grating will be calculatedThe electron moves parallel to the surface of the grating at a
constant speed, so that the radiation loss should be equal to the mechanidA etk to
move the electron at constant speed against the action of gwtaéfield [29]. It is assumed
that the radiation loss is negligible compared to the kinetiggradrthe electron.

By defnition of the mechanical work of a forée
W = —IF Cds (1.55)
with the Lorentz force:
F = qOE" +v,xH" (1.56)

and since the work of the magnetieldi is always zero one obtains the following

expression, where the contributions of the x and the y components of the E-polarestedefl
field are separated:

W= W+ W, (1.57)
with:
t, + D/ (v cos¥))
W, = - J’ qvocos¥, LE] (votcosW,, votsinW, z,, 1) dt (1.58)
t
and:
t, + D/ (V,cos¥))
W, = - I qvysiny, EE; (VotcosW,, vptsinW,, z,, 1) dt (1.59)

t
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The x component of the refited feld is given by:

[0e]

E(xy,z1) = (2m) 'Re %dw [ EL(x z:B, @) exp (iBy - i) ng (1.60)
0 —00

and the Rayleigh expansion gives the expression of el ifi terms of the diérent
diffracted orders:

E, (X zBw = Z E) n (B, w) Cexpia x+iy,2) (1.61)

n=-o

Taking into account 1.59), ( 1.60) and( 1.61), and by interverting the summation and
the integration, one obtains:

D
. tlJrvocoswl © o C
_Qugeos¥, i21mn r , C
W, = _TReD z J’ exp(TvocostPlt) dtIdooI Ex nexp (iY,20) dB[ (1.62)
Mm=-* 4 0 -o C

Only the n=0 term gives a non zero contribution to the integration, and the x componen
of the zero order is obtained from the Maxwell equations as:

-1
E>r<, o~ (kcz) -B? (- BGOE;, ot (*)UOVOH;, 0) (1.63)

then:
__9D I 2 -1 . C
W, = o2 Re %Odoo_[o (K5-B2) (- BayEy, o+ WHaYHYy, o) exp (ivyZo) dB[ (1.64)

For Wy the calculations are similar and one obtains:

) _qD (o) (o) .
W, = 2T[2tankPlRe(%’dw_J;E§,’ 0€XP (iYyZo) dB) (1.65)

For ¥, - 0 the workW, of Eq.( 1.64) agrees with the expression obtained/ay den
Berg [29] for the total workWw.
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1.4.2 Poynting vector and radiation factor

One now makes use of the power relatiqris50) which are inserted into the
expressiong 1.64) and( 1.65) giving the mechanical worlifter interverting summation and
integration one obtains:

- 9b 2_(n2 _1 = Ho -
W, = o2 J)’dw_[o(ko C) DZK ; Ey nEy,nYy * 2 Hy, ,H ynynDdB (1.66)
and:
- ab ool -
Wy antanwlgdwj' 2K, En annDO'[3 (1.67)

After some simplitation, the expression giving the total work is:

W:E
210

J’dw I(kz ) 'O (80, *;n uOH;’nﬁ;’n)wyndB (1.68)

reary,

The real part of the complex Poynting vector:

o

P, = QEEXHL (1.69)

represents the power density (power per unit area) radiated in the spectral order n.

From the Maxwell equations, one obtains:

1

éngH; (k2 B2~ oo(s Er El uOH;’nH;ln)kn (1.70)

yn

in whichk, = (a_,B,y,) is the wave vector of the refited radiating wave of spectral
order n.

Comparing this expression with the expression giving the total work leads to:
W:DIde' (% ErXH)DdB (1.71)
_’_[2 n

A closed relation between the mechanical work and the Poynting vector of the emittec
radiation is obtained.

23



Using the(n,, () reference frame of Fid..5 and recalling Eq( 1.39), Eq.( 1.68) is
rewritten in function of the angles of emgence.A new expression for the integrant of
Eq.(1.68) is obtained after some tedious work:

2Dc, (sOE;, nE;’ 0t uoH;’ nﬁ;, ) wyncoszn cos{dnd

. — (1.72)
2 oo £o ~ Vo (sinncos¥, + cosnsin{sin¥,) D3
(=P 5 vycosP 0
0 1
Recalling equation§1.38) and( 1.39) the integrant is rewritten as:
U"U" cos’n cosC
2 g _nn N S cosndnd (1.73)
De; £y vy (sinncos¥, + cossingsinW,)
0 vocosW, 0
with:
Urut = { (e/p) E, E, ,+H, A} (1-sinCcosn)
nUn = { (&¢/Hp) Ey nEy n+Hy Hy n} (1-sin"Ccosn) (1.74)

The z dependence of the inciderglfis is introduced explicitywhich permits to defie
a new quantity which is independent frog z

2 .
R, (w) q Cexp { -iy,zo} Uy, (w) (1.75)
so that:

RR,

4 _
CT2exp(2\y0\ z,) UT U (1.76)

This quantityRLf%{, will be referred to now as the “radiation factor” and plays a key role
in the calculation of the Smith-Purcell radiation.

Taking into account the condition for a wave to be radiative, equalid@8) is finally
rewritten as:

W = W, (1.77)

reary,
with:

O % O

O hip,n (¢ N) O

Co ~ Vo (sinncos¥, + cossingsin¥,) 3
vocos¥, J

, W2 2 cosn cosZZ\Rn(Z, n)|%exp

_q
Wo=pe | |
O_v2-1v2 [

cosndndd (1.78)
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in which:

1

Nint, n 2vy (1.79)

From Eqs(1.20) and( 1.37) one obtains:

A
I']int,n(zl n) = k (1.80)

I 2 - DZC 2
41 =2 - cosinl— +cos?W, 2 _2cosnsinl - 1
[Evo ssing - 1 £y, coTsing D}

This parameter can be considered as d&ectdfe interaction range, analogue to the
“formation zone” found in other types of radiation e.g. transition radigidnp or the
Cerenkov dect [9]. If the electron passes within the interaction range above the grating, it
effectively contributes to the™horder Smith-Purcell radiation in thé,if) direction. If it
passes far from the grating surface (i.e. several times the interaction range) the electron wi
not produce Smith-Purcell radiation with a sigrafit intensity

Recalling the defiition of the Poynting vectprand taking into account equations

(1.71),(1.77) and( 1.80), we can introduce the eggremitted in directionr(,{) per period
length D and per solid angle in th® radiative order:

cosn coszl\Rn (Z,n)|%exp 0 % O

9Py = i : . him‘r_'(z' 0 (1.81)
dQ” ., €D cy-v,(sinncos, + cossingsiny,) 13
| o, }
which can be rewritten as:
(E) = q°D° cosn cosZZ\R (Z,n)|%exp 0 % O (1.82)
dQ%, g ni3AS " O hingn (G 0) O

1.4.3 Invariance theorem

The two complementary experiments considered in paradragine in fact obtained by
turning the grating by 18around the z axi§.aking into account the expressions of tle¢df
in both cases, the deiiion of the radiation factor and the dawfiion of the radiative engy, the

reciprocity theorem for the zero order and th& etder allows to establish the following
invariance theorem:

The coeficients of the zero order of the Rayleigh expansion remain the same when the
grating is rotated by 18Ground the z axis:

18y, 0 (B @) = E} (B, w)

r r (1.83)
180backHy, 0 (B w) = Hy, 0 (B, w)
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As long as there is only one fildcted order the Smith-Purcell emission diagram remains
the same when the grating is rotated by°l&8@und the z axis:

‘lSOR—l‘ ? (1.84)

Ry?

and then:

dP dP
() =  (55) (1.85)
dQ’_; 7 ., de’

It is worthwhile to note that this last theorem holds even if the gratingeprsfnot
symmetrical with respect to the y axis.

1.5 Radiation by an election beam

Up to now only one electron was considered. In an experiment howaneglectron
beam will be used in order to obtain reasonable intensiirestermexp (Z‘yo‘ Z,) in equation
(1.76) has been introduced in order to compensate for ghdependence of the redited
fieldsE; , andHy  induced by thezdependence c, .

With this defnition, the radiation factor does not depend on the distance of the electron
trajectory to the grating surface and the power ofeglation emitted by an electron beam in
direction ,{) per period and per solid angle in tHB radiative order is obtained integrating
Eqg.(1.81) analytically over y andx i.e., over the beam prisi

From a theoretical point of viewhe extension of the grating is mife. In practice, the
grating has afiite extension. It is assumed in the following that the lengththe grating is
much lager than the period D (the number of grooves of the gratinggs Emough for the
infinite length grating hypothesis to hol@hen one has simply to multiply the previous result
by the number of grooves L/D to obtain the total power emitted by the electron beam.

1.5.1 Ribbon-like electron beam

Let us assume a ribbon like electron beam passing over a grating with period D anc
length L. The ribbon like electron beam is supposed to be of width b much smaller than the
width B of the grating (no edgededtt) and of height H with a constant current dengjtytds
passing over a grating of period D and lengthtlan altitude  Figure 1.8 describes the
experimental set up.
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FIGURE 1.8 : A-ribbon like beam passing over’ grating.

Then, the power emitted in order n by the beam per unit solid angle into the direction
(n,Q) is given by:

H

cosn cosZ (hyp, n—ho) (1-exp(- ))

dp quJO int,n
do’ = = : R.(¢,n)|? 1.86
‘a0 n D, {Co‘Vo(Sinr]COS‘PﬁCosr]sinZsinLIJl)J3 Ry (&) (1.86)

vocos¥,

The frst factor characterizes the experimental setup and includes the current tlemsity
size of the electron beam, the size and period of the grating.

The second factor is a function of the electron gnend the angles of observation
(Nn{,y for the spectral order n.

The last factor is the radiation factor and has to be calculated independently

ForW, = 0, =0 and b-», one obtains the expression given by Gatet. [38]:

dp _  eJgbL cosn cosL
dQ  4me,Din (Bt- Sinr])z(y_2+ cosn sin%)

o5 ORa (N, Q)2 (1.87)
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1.5.2 Gaussian electon beam

In reality, an electron beam often exhibits a Gaussian distribution of the current density
Fig. 1.9 describes the experimental set-up: a two-dimensional Gaussian distribution with
widthsoy, ando, passes over a grating with period D with the beam axis at a distpalceve
the grating which is shielded against electrons at z<0 (i.e. electrons passing at an altitude z<

do not contribute).

Integrating Eq( 1.81) over the beam prdé gives the power emitted in order n by the
beam per unit solid angle in directian{):

oLD
dp _ © Eboszr]coszz EJIR_l\ZD}erfD Dexp(——so) {1—erf(;—sco)} (1.88)

dQ g in3)\3 0/8a,

o = Jp270, 0, is the total beam current.
For clarity ¢ = ./20 /i, Sy = 2o/ h;, have been introduced
No angular divegence of the electron beam is considered in this approximation.

ForW¥, = 0, ox->» andoy->c, the above expression conges to the expression given
by Goveret al. [38]

shielding

FIGURE 1.9: A Gaussian beam passing ovex grating.
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1.6 Some emarks

1.6.1 Gratings with finite conductivity

When using relativistic electrons (cO/#l) photons of very short wavelength are
emitted in forward directiong->90°. For example, using a commercial optical grating of
1800 lines per mm, aj=80° the corresponding wavelengthhiss 84 A for W;=0°. At such
short wavelengths, howevéehe hypothesis of a perfect conducting surface fails and one has to
use a more complete theoretical model including the conductyky. Some approximate
models have been givgA7], but to the authds knowledge, at present there is no available
accurate theory of SRadiation including a fiite conductivity a(A). The demonstration of
sectionl.3using the Greer’'theorem is no longer valid, because the contributiondafds not
vanish any more and one should adapiMie den Bay approach taking into account theldi
inside the gratingAnother method could also be used to calculate the contribution of the
propagative 8ld, as proposed by Bachheini2@] using a direct calculation of thelil based
on the method of steepest descent.

In addition, the small ratia/D implies a very lage number of propagative ftdcted
orders (131 in the previous case fe10°). Under these circumstances, the solution of the
grating problem can become fiiult and an asymptotic theory for thefdittion of small
wavelengths at lge incident angles should be used. In a recent publication, M27an
presented a ddérent approach based on therMikaelian [42] description of radiation
produced when a relativistic electron passes a linear slit. In this approach, the radiation i
expressed in a closed form, which is very convenient for designingxgé&iments. It
assumes, howevemfinitely thin screens, an assumption which may be questionable for
photon wavelengths around 100 A.

Some peculiar &cts appear for not perfect conducting metallic surfacésaclhiing
electromagnetic wavd89]. Bachheime[36] has shown that surface plasmons can in some
cases greatly enhance the Smith-Purcell emission for the shortest wavelengths in the visib
range. Howeverspecial formalisms have to be applied for the solution of the metallic grating
problem.

Due to these limitations, the predictions presented in this work will be restricted to:

(i) wavelengths for which the conductivity of the surface can be consideredrate infi
i.e. from millimeter wavelengths to infrared. For the visible range, the predictions will only be
qualitative.

(i) conditions for which the ratid/D is not too small, which means for relativistic
electrons that the emission angles are not too close to the forward direction, typisal§’
in most cases.
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1.6.2 Non-parallel electrons

Up to now only electrons moving parallel to the grating have been considEned.
electromagnetic problem was then pseudoperiodic and the Floquet theorem (equivalent to tt
use of the Rayleigh expansion) holds.

In practice, one will always use electron beams and not single electrons in order tc
increase the Smith-Purcell emissiédm electron beam has always aite divegence, which
means that electrons moving not parallel to the surface also contribute to the emitted radiatiol
The solution of the grating problem becomes in this cadecudif because of the non-
periodicity of the incoming &ld. Moreover electrons can hit the grating surface, due to their
non parallel trajectoriesAn approximation for small angles of incidence was given by
Bachheimef{20] who has shown that for low incidence angles, the obtained radiation was
closely related to Smith-Purcell radiation.

In a first approach, assuming that the dpesrce of the electron beam is small, the
incoming feld is considered as pseudo-periodic and the solution of the grating problem
obtained with the hypothesis of parallel electrons is considered to still Gslu,/L is
probably a good approximation and is easily satisii one considers the following example:
E=5MeV, D=1mm, L=10cm and A=1 mm (observation atn=(=0°) we obtain then
©<8.6mrad. Considering an electron beam which interacts entirely with the grating (with a
diameter r=[}=0.86mm in this case) one obtains an estimation of the maximum beam
emittancee=r*©=7 mmmrad, which is quite lge. In that case, even the positioning of the
beam above the grating would not be todiclilt. Then for long wavelengths, thaitie beam
emittance is not considered as a limiting factor when designing a Smith-Purcell experiment
The result is quite diérent if one considers emission in the visible or X-ray domain, for which
the electrons have to pass extremely close to the grating in order to if@&fact
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CHAPTER2  Solutions for the grating
problem

Using the ideas oforaldo di Francig8] andVan den Beg [29], the electromagnetic
field of a chaged particle moving at constant speed has been calculated in the previous
chapterand the Smith-Purcell radiation has been expressed as a function ofrtutediffeld
when this particle passes close to a periodicadifive structureTherefore, the calculation of
the Smith-Purcell emission has been reduced to the so called “grating problem” (set
paragraph.l.]). Several methods are now available to solve this problem and the choice of a
particular method greatly depends on the gratingIprddiome of the modern techniques will
be described and their domain of usefulness will be given.

2.1 Description of the problem

The theoretical problem may be described in general terms as follows: an incident
monochromatic plane electromagnetic wave impinges on a periodiactife structure
resulting in a discrete set of mfted waves; the amplitude and the parametgyaB.yo)
characterizing the incoming wave are known as the parameggus, B4y, of the difracted
waves.The unknowns are the amplitudes of these waMes.refection grating is assumed to
be electrically perfectly conductirand is described by the equatibr= f (Xx) . The Cartesian
reference frame with the y-axis chosen parallel to the grating grooves and the x-axis chosen
the direction of the periodicity is usetihe medium above the grating is assumed to be the
vacuum.

The major diference between the “classical”’ grating problem in spectroscopy and the SP
effect is the nature of the incoming plane wave, which in the latter case is evanescent
Therefore, it is not possible to d&diincident angles for the incoming plane wave as usually
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FIGURE 2.1 : The grating problem scheme foiSPradiation.

As described in chaptd; one assumes that a plane wave with wave vegt@nil
incoming parameterag,f3,yo impinges on the difaction grating.The incident ®ld has the

form:
E = exp (iopx —iy,2)
_ (2.1)
H' = exp (ia x—iy,2)
with:
W= Bvysin¥,
aq9.=-— - =
0 VocosW, (2.2)

1/2 1/2
Yo=i(ag+B°-k5) with (a2+B*-k5) 20

The constants in the expressions of the incidefdgiof the moving electron have been
omitted hereThe actual &Id is of course given by Eqs1.17) to ( 1.20) of chapterl. But as
the Maxwell equations are lingdhe solutions which are going to be obtained have just to be
multiplied by the proper factor to get back the solution of the physical problem.

The refected feld satistes the source-free Maxwell equations:
(O+ipiy) xH" +iwe,E" =0 (23
(O+iBi,) xE"—iwpoH =0 '

The total feld satistes the boundary condition:
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nx (E +E") =0 (2.4)
Therefore, one has to consider the two cases of polarisation separately

The diffracted feld above the grating can be written using the Rayleigh expansions:

Ey (% zB, w) = Z Ey n (B, w) exp(ia, x+iy,2)

for0<z<oo (2.5)

Hy (0 ziBw) = 3 Hy (B, w) explia x+iy,2)

n=—oo

. . 1/2
in which a = a,+2m/D and y, = (ki-B2-0a?)

Im(y,) = 0.

with Re(y)=0 and

It is important to remember that the validity of the Rayleigh expansion has been
established for z>0 only (i.e. over the gngd and up to now no information is available on
the field in the grooves and one cannot calculate the Rayleighateets. In the following
paragraphs are describsoime of the modern methods to solve this propteferedto as the
“grating problem” in the literature. For the presentation, inspiration has been mostly taken
from [29], [30], [31] and[39], adapting the diérent formalisms to the nature of the incoming
wave (evanescenelds and conical difaction).

2.2 The RayleighAssumption

The validity of the Rayleigh expansions has been prowgside thgrooves, but there is
no proof that it is also valid inside the grooves. If one assumes that it is (this constitute the sc
called Rayleigh assumption because Rayl¢i@h was the fist to use it) the determination of
the amplitudes of the difacted waveds simple.The pioneering works on Smith-Purcell
radiation of BachheimgR0] were made using this hypothesis and gave reasonable results.

In E-polarisation, assuming that on the grating surface tifaai#d feld is correctly
described by the Rayleigh expansion and taking into account the boundary condition, the
following infinite system of linear equations has to be solvea ferf (x) :

[oe]

Z E;’ nexplia x+iy 2) = —E;(x, 2) (2.6)

n=—co
For the H-polarization case, the boundary condition leads to solze=fof (X) :

(o]

(iagf'(x) +iy,)
(L+f'(03)"Y?

(ia f'(x) —iy,)

H! (%, 2) (2.7)
n e (1+F ()Y g

r ; ; —
[H, nexplio x+iy 2 = -
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Both problens have in fact the same form:

> Fa0,(¥) = F(X) (2.8)

n=-oo

One recognizes the expansion of a function with respect to a basis of fun€hans.
problem has been intensively studied in the literature: in orderdate unknown coétients
F,,, one truncates the infte seris to N and calculates an approximate vaklg. Then,N is
increased until convgence is achieved.

Two commonly used methods are presentdat frst one was used by Lord Rayleigh
himself to calculate the properties of gratings at the beginning of the célrftergecond one
is a variant recently introduced.

2.2.1 Point Matching Method

The infnite serieq 2.8) is truncated, keeping onlyN2+1 terms and verid for 2N +1
points of the surfac&.hen, a finite linear equations system is obtained:

Aon OFY = (B, (29)

Ap, n = (pn (Xp)

B (2.10)
Bp =F (xp)

This method is called the Point Matching Method. It appears to be very sifiyge.
major problem is the inversion of the matA'i;’ n-

2.2.2 Impr oved Point Matching Method

A variational method can also be used. It west fntroduced by Meechafd5] and
called the Improved Point Matching Method by lkuno afabuura[46] who studied it
intensively in order to solve the grating problem.

In this approach, the diacted felds are approximated by truncated Rayleigh
expansions, and the céiefents of these expansions are found by minimizing the following
quantities ¢ and | for the two fundamental cases of polarization:

e :{Eiy+E;2ds (2.11)

Iy = {n [0 (H}+H)|*ds (2.12)
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The truncated Rayleigh expansions are given by:

N
Ey (%, zB, w) = z Ey n (N;B, w) expia, x +iy,2)
" (2.13)
Hy (%, z;B, w) = z Hy, o (N;B, w) exp(ia x +iy,2)
n=-N

Minimizing Ig and |, one obtains two systems of linear equations which can be
expressed in the form of matrix equationg-E=Vg and My-H=Vy.

For the E-polarization, the following elements of the matrix &hd the vectoV g are
obtained:

2 x
Mep o = [exp i (n=p) T+ (Y, =y ) F()} ds

- (2.14)
Vep ={6Xp{ 1 (=p) o x+i (~Yo~ ¥, )f(x)} ds
For the H-polarization, one obtains:
(ia f () —iy,) (o f'(x) —iyy)” _ 2m «
Mo = (1+f'(x)p2) ”_exp{i(n-p) §x+| (Vo - V) F(x)} ds
. . . - (2.15)
f' f'(x) -
v, - (agf' () +iyp) (TapF'(x) —iyy) exp{i(-p)ZE;TX”(‘VO—yp*)f(x)}ds

P (1+f'(x)?)

The solution of the matrix problem involves the numerical computation ofge lar
number of integrals which can be time consuming, depending on the gratimhg pr@fisome
grating profies howeverthe matrix codicients can be obtained in closed form: when the
grating profie consists of piecewise linear functions the fioeits are easy to calculate and
the method seems particularly attractive for the triangular and rectangular gratings: one
decomposes the integrgl2.14) and( 2.15) into sub-integrals on each facet were f(x) is a
linear function of x. Moreovethere is a direct link between the integrals giving the david
Vy matrices and the integrals giving the: BindV g matrices, which saves computing time.
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2.2.3 The validity of the Rayleigh hypothesis

The Rayleigh assumption has been widely used by many authors but it turned out venr
soon that when using the Point Matching Method, the predictions were not correct for deej
sinusoidal gratings nor for triangular gratings witlg&aslope for the facetShe validity of the
Rayleigh assumption was then seriously questioned and this problem gave rise to a number
theoretical works about it. It has been proved that for an arbitrary gratingg pirofs not
possible to say whether the Rayleigh assumption is valid g2t

The validity of the Rayleigh assumption is not related to the nature of the incoming wave
(evanescent in the Smith-Purcellfditction case, propagative in spectroscopy) but only to the
grating profie. When using the Point Matching Method, this hypothesis is not valid for
sinusoidal grating when h&D.1426 [44]. For grating profes which are not analytic
(rectangular or triangular gratings) the Rayleigh assumption, combined with the Point
Matching Method, is in general not correct: Millar proved that its validity is linked to the
singularities of a conformal mappintherefore, it will not be used for this kind of gratings for
which more reliable methods are preferable.

In contrast to the Point Matching Method, exact results can be obtained with the
Improved Point Matching Method: it has been proj44], [58] that both quantities=land |
vanish forN - o and that the set of cd'EdientsE;,n(N;B, w) and H;,n(N;B, W) conveges
to the Rayleigh coétients: the method is rigorous for any grating [eofi

2.3 The Integral Method

2.3.1 Description of the integral method

The frst rigorous methods available for solving thdrdidtion problem for a perfectly
conducting grating of arbitrary prtdiwere the integral methods proposed at the beginning of
the sixties by Petit and Cadilhptr], Wirgin [48] and Uretsky49] for the E-polarization case.
For the H-polarization case thasti rigorous approach was given in 1967 by Pavageau
et al. [50].

Later, Van den Beg [29] was the fist to propose a complete and correct theory of the
Smith-Purcell dect using the Integral Method which he had developed to solve the grating
problem[51]. In fact,Van den Beg proposed several integral equations of either thiedi the
second kind. From a numerical point of vjdwedholm integral equations of the second kind
seem easier to be solved, because possible singularities in the kernels may lead to numeri
problems in solution of integral equations of thstfkind.

A complete demonstration of this method, involving the use of a two-dimensional form
of the Greers theorem, can be found[il] or in the book of Pet[9]. In this work only the
main results will be explained.
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The coefi cientsE;, , and H;, . are expressed as functions of the totdfat the surface
of the grating:

i . .
Evn = 2D ET!’(n [DE)) exp(-ia x-iy,2z)ds (2.16)

_ : :
Hy = —W E{Hy(n (M) exp (—ia, x—iy,2) ds (2.17)

in which the path of integration is taken at the grating surface along one period and at
constant y

The quantitieq 1] E, and H, are calculated from the integral equations of the second
Kind:

1 _ i
5Mp D]pEy(xp, zp) + P{(n N Ey) (—nIO EI]pG) ds = ng EDpEy(xp, zp) (2.18)

1 .
éHy(xp, z,) + P{Hy(n (MG)ds = H;(xp, z,) (2.19)

where the point (xyy) is on Land Pdenotes the Cauchy principal value of the integral.

G is a Green function given by:

G(xp,zp;x,z) = z Zleexp{ian(xp—x) +iyn\zp—4} (2.20)

n=-co n

There exists no general analytic solution of integral equations and therefore the solutior
has to be found numericallyhe general technique consists in reducing the integral equation
into a linear system of equatioff39], [51]. Two methods have been commonly used: the
Fourier series method and the Point Matching Metfibeé. Fourier series method transforms
the integral equation into a linear system of equations. It requires the computation of Fourie
coeficients of the kernels, which are given by Fourier integfdisrefore, it is of practical use
only when these integrals are analytically calculable, which is the case for piece-wise linea
grating profies like the triangular or the trapezoidal pexi Due to this restriction, in this
work the more general Point Matching Method is used, which also transforms the integra
equation into a linear system, but has the advantage that with some precautions, it can |
adapted to every grating prefi

2.3.2 Solution of the integral equations

The derivation of the integral equations followingn den Beg [51] makes no
assumption about the grating plefiHoweveyr the solution is given only for cases where the
grating profie is given by an analytic function z=f(xThis excludes a priori rectangular
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gratings, or triangular gratings with one vertical facet. Simple techniques to overcome this
difficulty will be given, which allow to adapt the Integral Method to almost any gratindgprofi

The integral equations corresponding to both cases of polarization have the same form ¢
the integrals givingE; , and H; o

D

1

QX(xp, zp) +IK (xp, ZgiX, 2) X (X, 2)dx = Y(xp, zp)
0

5 (2.21)

Rn=J’Bn(x, z) X (X, z) dx
0

using in the E-polarization case:
X(x,2) =exp(-iayx) (n Ey)
Y(x2) =exp(-iag) (nDE,)
K (% 2%, 2) = 141 () 2exp (a5 (x,= X)) (-1, [1,6) (222)
B,(x,2) =J1+f(x) 2 (i/2y,D) exp (ia x—ia x=iy X)
R, =E),
and in the H-polarization case:
X(x,2) =exp(-iagX) (Hy)
Y(x2) =exp(-iagx) (Hy)
K (X5 2%, D) = 1+ (X) 2exp (ict (,=X)) (- [G) (223)
B, (x,2) ==/1+f (x)2(i/2y D) exp(iayx) (n 1) exp(-ia x-iy,x)
R,=Hy,

The unknown functionX(x, z) is approximated by a combination of M values
X, = X(Xp Z,) m=1, ..., M atM pointsx,, of the interval [(D[

M
X(X,2) =S(x,2) = Z P (X, 2) X\, (X Z7) (2.24)
m=1

The approximate integral equation becomes:

M D
1
éX(xp, z,) + Z %K(x, Z: X Zp) P (X, 2) deB(mzY(xp, Z;) (2.25)
0

m=1

One writes this equation for each po(mp, zp) = (xj, zj) j =1, ..., kand obtains the
following system of linear equations:
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M
1 .
Z (Kj,m+§61',m)xm:Yj J=L..M (2.26)
m=1
with:
D

Kim= %’K(x, Z;X;, zj) Pn (X, 2) dx (2.27)

Yi =Y. 3)

In the same waythe integrals giving the Rayleigh cbeients are calculated as:

K
Ry = > Bni (2.28)
k=1
with:
D
Bom = IPm(x, 2) B, (x, z) dx (2.29)
0

The crucial point consists in the choice of the approximating fun8ipnz) i.e. the
choice of the function®, (x, z) . Van den Beg [51] proposed to use periodic splines and to
carry out the numerical integrations with a 4-point Gauss-Legendre quadrature which is
accurate enough when the kernel of the integral equation is smooth.Since the gratags profi
periodic, and due to the ternegp (iy,|z—f(x)|) in the expression of the kernel, it has been
proven[39] that the best quadrature is the rectangular rule with equidistant points.

In this case, the matrix cdefients are simply given by:

Kj k = K(X, ;% ) [D/K (2.30)
As soon as th&, values of the &ld are known on thkl points on the grating surface,
the Rayleigh codifcients are calculated fro(r2.29) with:

By m = Bn (X Z) (D/M (2.31)

Some problems remain however in order to calculateMbelements of the matrix
system. First the kern& of the integral equations are given by slowly cogwey series
especially Wherxp - X.

Several methods have been proposed to calculateertly this seriesAmong these, a
simple method consists in evaluating the remainder of the series giving the[&&in&his
series has the form:

39



[oe]

K (Xp Zyi%, 2) = z { (o, /y))A+B}exp(ia C+iy Dl) (2.32)

n=-o
with A, B, C andD being function ofx Zoy %, Z.

This series is truncated in the form:

N-1
K (Xp Zy%,2) = z { (o /y)A+B}exp(ia C+iy D|) +K, +K_ (2.33)
n=-N+1
with the remainders:

= S {(a,/y,) A+B} exp(ia,C+iy, D))
=N
N (2.34)
S {(a,/y,) A+B}exp(ia,C+iy,D)

n=-ow

The serieq 2.32) does not convege very fast, especially aB| -~ 0 and one cannot
simply neglecK, andK_ even for relatively laye N.

However for lage N one fndsy =ia_ whennz=N andy, =-ia whenn<-N and
therefore:

(2.35)

Z {-iA+B} exp(a, (iC-|DIl))
Z iA+B} exp(a, (iC+|DIl))

Sincea,, = a,+2m/D the remainder&, andK_ are given by convging geometric
series which are calculated in closed form:

{~iA+B} exp (0, (iC - D))
Ke = _exp@/D (iC- D))
{iA+B} exp(a_y, (iC+ID)))
T 1-exp(-2/D(iC+ D))

(2.36)

The order of truncatioN is increased until the results conyeto a prescribed accuracy

The second problem is that the presence of the f(x,) —f(x)| in the
expression of the Green functi¢2.20) gives after derlvatlon a terrsgn(?(xp) -f(x)) in
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the expression of the kernel of the integral equdt@&1), which would seem to indicate that
the kernels are not continuous wher= Xy A careful analysig52] shows that they are
continuous and that the limits whe»x, are given by:

lim (-n_ [ G) = .t {f' (x,) {1 % n +ia0} + ™ 06) }
s PP a2l 2D A Y 2T A(LF (%) %)
. 1 1 < 9, 10 " (%p)
lim (—nD]G)z{f’(x){ B ,
X = X, 1+ (%)) P 2Dn:z_ooyn 21| 4m(1+f(x,)?)
The presence of the terrti(X) clearly indicates that the grating ptlefimust have no

edge and the difaction problem for blazed gratings can not be solved using this techAique.
simple method which permits to overcome thigidlfity is given in sectio.5.

(2.37)

2.4 The Modal Expansion Method

When the trajectory of the clggad particle is perpendicular to the grating rulings the
Smith-Purcell dkct in the (x,z)-plane (i.e. fo€=0°) is reduced to the study of the H-
polarization difraction becausé=0 impliesp=0, for which the E-polarized contribution of the
incoming wave vanishel29]. In this special case the formalism is very similar to the one
applied in calculations of the Smith-Purcell radiation produced by a lingeckatended in the
y direction, and moving in the x direction, parallel to the graf2®}. Such a theory has been
developed bywan den Beg [30] for gratings with rectangular prtdi(also called lamellar
gratings) using the Deryugin treatm¢si .

As soon as the parameterg,3,yy of the incoming wave are known, there is complete
freedom to choose the method to solve the grating probléen.Deryugin method is also
adaptable to the E-polarized compongdit] of the feld produced by a point clug. A
complete description of the Smith-Purcell radiation produced by an electron passing over
grating with rectangular prddi is presented in this sectiois it is the generalisation of the
Van den Beg[29] description, similar notations are adopted. Figtigeshows the relevant
parameters for the grating.
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FIGURE 2.2 : Profile of a rectangular grating.

Above the grating, (i.e. in the half space z>0), the tatlddiare given by the sum of the
incoming felds produced by the electron and of the refracedsfiwhich can be written using
the Rayleigh expansions:

00

Ey(x, z;B, w) =exp(iax—iy,2) + Z E;,n(B’ w) exp(ia X +iy,2)

(2.38)

0

Hy(x, z;B3, w) =exp(iax—iy,2) + Z H;,n(B, w) exp(ia X +iy 2)

n=—-o

In order to obtain expressions for thelds inside the grooves (z<0), the boundary
conditions on the walls of the grooves are used:

Ey(x, z,B,w) =0

f = 2.
nD]Hy(x,z;B,w) -0 orx = 0,a (2.39)

From( 2.39) it can be shown that the total electreldiinside the groove can be written
as a Fourier sine seri¢®l] while the total magneticdid can be written as a Fourier cosine
serieg31]:

E, (X zB, w) = ZlEy,m(z;B, w) sin(%x)

(2.40)

[ee]

Hy (%, zB, w) = mzony’m(z;B, w) Cos(m%[x)
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These expressions are inserted into the Helmoltz equations for the souraddsee fi

(82+02) E, + (k;— B E, =0

2 2\ 14f 2 2\ 1y’ (2.41)
(05 +0,) Hy+ (kg=B7)H, =0
At the bottom of the groove, the boundary conditions are:
E, (X -hiB, ) =0
forO<x<a (2.42)

n EEJHy(x, -h;B,w) =0

From equationg 2.40), (2.41), and( 2.42), the following expressions for theefils
inside the grooves are obtained:

00

MTTX
Ey(xv,z;w) =exp(ia,vD) Z Ey,msin( a V) [exp(-ik 2) =T _exp(iK 2)]
m-t (2.43)
. mT[XV . .
-Iy(xv,z;oo) =exp(ia,vD) Z Hy,mCOS(T) [exp(-ik2) +T _exp(iK 2)]
m=20
with  O<x,<a and -hs<z<0, «_= (K-p>- (mma)?)? and

M, = exp(2ik_h).

The modal expansions2.44) which are valid inside the grooves are matched to the
Rayleigh expansions valid above the grating using the continuity conditions at the open end ¢
the grooved < x, < a:

lim Ey: lim E
z- 0" z-0

im H,= lim H
z- 0" y z- 0 y

y
(2.44)

This gives a relation between thg , andH, ., of the Modal Expansion and tig,
and Hy’ , of the Rayleigh expansion:

00

* MTX
exp (iagx) + Z E;,,n(B, w) exp(ia x) = z Ey msin( 2 Y [1- .l
n=-e m=1 (2.45)
: Co _ > MTX,,
exp(iag) + % Hy (B w)expliax) = % Hy cos( 5 ) [1+T ]
n = —oo m=0
A second set continuity conditions oK x, < a is:
ZIiﬁmoﬁzEy = Zlil110_azEy i
z|Lm0+62Hy = leﬁrno_azHy
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which gives:

(v exp (i) + 5 Ej (B o) (iy,) explia, ) = 5 E, p, (<ik,) sin( )y [1+T ]
S m(:l (2.47)
. . r . . . mrK,
(-iyy) exp (iayx) + Z Hy,n(B, w) (iy,) exp(ia X) = Z Hy,m(—le) cos(T) [1-1.]
n=-co m=0
The boundary conditions on the ridges x, <D are:
lim E =0
20 (2.48)
I|m o,H,=0 '
O+
giving the equalities foa< x, < D:
exp (iagx) + z Ey, n (B, ) exp(ia x) =0
n=-e (2.49)

(=iyp) exp (iagx) + Z H;’n(B, w) (iy,)expia x) =0

n = —oo

Combining Egs.(2.45), (2.47) and (2.49) with (2.38) allows to get rid of the
coeficientsk, ;, andH, ., of the modal expansion and to obtain a linear system involving
only the codimentsE andH , of the Rayleigh expansion needed to calculate the intensity
of the Smith-Purcell radlatlon

In order to achieve this, one calculatestfi

D
{J’exp (-ia,x) Ey}
0 z=0

D
bexp (-iax) azHy}
0 z=0

From the continuity relation§2.46) the equalities to be satisfi by the &lds at the
open end of the grooves are obtained:

(2.50)

J’sm(—) I|m 6 E Ism(—) I|m 90, E

R N (2.51)

J’cos(—) I|m H —Icos( )ZILmOH
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Recombining the relations obtained frof2.50) and (2.51), one extracts either
systems involving only the Rayleigh cbefents or only the modal expansion doménts, the
latter one not being interesting for calculating Smith-Purcell radiafiba.following linear
systems is obtained for the electrigldi

Z (D8 , =Y,V ) E,n=Cc k=07172 .. (2.52)

n=—o '

in which:
r,-1 .
C, = D6k,0+2ay0 Z < (I’ +1) <D m 0 (2.53)
© r-1
2 MTX

Pon = a'lj’sin(T)exp(—icxnx) dx (2.55)

0

In order to fnd the unknown Rayleigh cdafients, the infiite system of equation
(2.52) and the infiite serieg 2.53), (2.54) are truncatedThe orders of truncations are
increased until convgence is obtained'he integrals givingp = are calculated analytically

For the magneticdid, the following system is obtained:

> (VD ,~VinHy=Cc k=07L72 ... (2.56)
n=-o
in which:
- rm_l i
Cy = VDY o *a Z EmKmi 31 Pmkt mo (250
m=0 m
- rm_l i
Vikn =@ z €Ki+ 1 +1LIJm’ Fomn (2.58)
m=0 m

a
mTX

W =alfcos(—)exp(-ia x)dx

mn .([ a : (2.59)

€ =2~ 6m, 0
It is worthwhile to note that a simple relation exists betweerﬂ:tm(;1 and theW

which makes the computation of ti and theV, , coeficients very similar in both cases of
polarization This saves considerable computing time.
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FIGURE 2.3 : Scheme of a slabeflection-transmission grating.

The modal expansion method is also useful to study thectieth and transmission
grating described by Fi@.3. In this case, there exists also a transmitid fivhich in turn is
given by a Rayleigh expansion.Theldi above the grating is given by the incideeldfiplus a
Rayleigh expansion and has to be matched with ¢lieb ifiside the grooves, which is given by
a modal expansion, and thelél under the grating which is also given by a Rayleigh expansion
[53], [54].

2.5 Use of the Integral Method

As seen in paragrapgh3, it is possible to study almost any type of gratings solving the
integral equations with the aid of the Point Matching Method. Some problems appear howeve
when the grating surface has edges (see(Bd37)). A simple and dfcient solution to
overcome this difculty consists in replacing the grating pleff(x) by an approximating
profile f3pdx), and testing the comvgence of the results when the piefy,{x) tends to f(x).

For triangular or trapezoidal gratings, one can use the gratintedggf{x) obtained with the
summation of the N1fsts codficients of its Fourier serig¢39]:

N N
21X . 21X
fapp (X) = z cncos(nﬁ) + z snsm(ni) (2.60)
n=0 n=1

This approximating prd& has no edge, so that the integral method can be used without
problem.The convegence of the results when N increases is a good check to test the validity
of the results obtained with this methddthe echelette gratings are easily treated with this
method. One can for example use these properties to check that the results given by the IPF
method and the IE method applied to triangular gratings are identical.

When the function describing the grating deois not analytic (rectangular grating or
triangular grating with one vertical facet), the Fourier expansion however does nogectiaver
the original profe for the singular points: this is the well known Gibbie@f So one has to
find other approximating praéi

A convenient way is to use nested sine functions of the form:

f(X)=Y , with Y ;=SIN(172Y ,.1) andY g=SIN(2riX) for the rectangular grating
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Fig. 2.4 illustrates the construction of the approximating jpeofor N=0,...,10.The
curves are twice continuously fdifentiable. In the calculations, the number of iteration is
increased until the obtained ptefapproaches the desired omben the integral method can
be used to check the results given by other metAdaserrors introduced by carrying out the
calculations for rounded edges is probably not a serious restriction since in, rbality
fabrication process of grating always results in some imperfections in the gratimg (S

Fig.2.5

FIGURE 2.4 : Nested sine functions giving a squarprofile.
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FIGURE 2.5 : Picture of a shot-period triangular grating with imperfections in the profile.
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2.6 Discussion

It is worth-while noting one particular di€ulty, characteristic of the Smith-Purcell
diffraction problemThe radiation factor can vary on a verygurange of the order T0..1¢
and precise values of this factor are needed even if it is very small because this radiation fact:
is only one part of the expression giving the radiated p{R@&r[30], [32]. Reliable results are
obtained when the conygance of the method has been achieved and when the power relations
and the reciprocity theorem have been satisfin some cases, it is fiiult to satisfy the
power relations or the reciprocity theorem with a satisfactory accuraeyonvegence of the
results when increasing the truncations or the number of points for the surface discretizatio
becomes in this case a more useful criterion.

For symmetric grating pradés, the reciprocity theorem for the zero amst foropagative
orders is automatically satisfi and therefore not a criterion for the accuracy of the results.
Only the power relations can be used to test the accuracy of the results whegarwe/eas
been achieved.

All methods described above lead to the solution of a system of linear equations, whick
often becomes a dii€ult numerical problem.The d#rent programs have been written using
MATLAB [55], a package for scientfiand engineering numeric computation based on the
LINPACK [56] and EISRCK [57] projects, which together represent the state of the art in
software for matrix computatioi.he drawback of MALAB is a rather low computational
speed because it is an interpreted languBge results layely depend on how well the matrix
to be inverted is conditionedhe condition number cond(X) of a matrix X measures the
sensitivity of the solution of a linear system of equations due to uncertainties in the data an
gives an indication of the accuracy of the resulise most common test is the 2-norm
condition number which is the ratio of the dast singular value of the matrix to the
smalles{55]. The lager the condition number is, the more reliable the res@fsther
MATLAB test is the estimate for the reciprocal of the condition of matrix X in 1-norgegar
column sum of X) rcond(X)When X is well conditioned, rcond(X) is close toVihen X is
badly conditioned, rcond(X) is close to 0.

For all methods (Rayleigh methods, MEM or Integral Method) it appears that the
matrices are badly conditioned when one increases tfexatlif truncation orders. In some
cases the matrices get extremely badly conditioned before the genwerhas been achieved
and no reliable results are obtained, e.g. the IPPM method for triangular gratings géth lar
slopes or the Integral Method for comb-like gratings. More sophisticated treatments are
necessary in these cases.

2.6.1 The Rayleigh method

As explained in paragrapB.2, the Rayleigh method is not of general validigor
shallow sinusoidal gratings however the obtained results are correct whengemieeehas
been achieved. Sinusoidal ptefgratings are nowadays easily produced by photolithography
even for short period gratings. One advantage of the Rayleigh method is that the inversion ¢
the linear system of equations directly gives the radiation factor for faicdéd ordersAlso
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the coeficients of the matrix systems for the E and H polarizations are closely related, which
saves computing tim&herefore, this method is well suited for shallow sinusoidal gratings.

2.6.2 The IPPM

In this approach the Rayleigh assumption is also used, but the variational methoc
introduced to solve the boundary condition has been proved to be of general.\atidity
advantage is that this method gives also directly the radiation factor by inversion of the linea
system for all diiracted orders. Howevenumerical problems appear for deep sinusoidal
gratings, for which the convgence of the results becomes so slow that other methods become
more appropriate, e.g. the Integral MetH{68]. The same problem appears for triangular
gratings, when one facette has géaslope, e.g. for echelette gratifg3].

NearWood-Rayleigh anomalies, it also appears that cgever is dficult to achieve
and the power relations are never well sa&tksfihe H-polarization case is the mosfidiflt to
be solved.The method has been improved by introducing smoothing procedures which
accelerate the con\ggncg60][61]. Although the mathematical foundations of the method are
rigorous, its implementation for arbitrary grating pediis not simple.

2.6.3 The MEM

The MEM is a typical example of a specialized method applied to a particular grating
profile. The method is valid only for rectangular gratingisis method has two advantages: the
coeficients for the matrix systems for E and H polarizations are closely related and the
solution of the matrix system gives the radiation factor for all the considered orders, which
saves computing tim&he method also takes care automatically of the edges of the grating
profile, which require a special treatment when using more general methods like the Integre
Method. Problems of conwgence appear however for deep gratings (h/D>0.5) and for
gratings with very small pitch (a/D<0.1) or verydaritch (a/D>0.9)The power relations can
not be used to test the validity of the results because they are automaticaldsaisly the
convepgence of the results when increasing the truncations is a reliable check of their. validity
A variant has been introduced for symmetrical triangular grafgjs

2.6.4 The Integral Method

As explained in paragrapgh3, the Integral Method is of general validity and has been
applied successfully for a [g& variety of profes in calculating grating difaction eficiencies.
The coeficients of the matrix systems for both polarizations are also closely related. However
convegence can be slow in some casklso one integral has to be calculated for each
diffracted orderThere exist some grating pres for which the method may not work, e.g. the
comb-like gratingThe Integral Method can be considered as the most general and the mos
reliable of the methods discussed in this work.
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CHAPTER3  Calculations of  Smith-
Purcell radiation generated
by electrons in the MeV to
100MeV enegy range

In the previous chapters, a method to calculate the Smith-Purcell radiation emitted by ai
electron moving parallel to a grating has been given. It has been proved to lead to a gratin
problem, for which several solutions have been describedse techniques will now be
applied to calculate Smith-Purcell radiation produced by electrons in the 1tdMEX0 MeV
enegy range, an engy domain for which almost no calculations have been performed
[32][63][64], and for which very few experiments have been carrief6di[66].

3.1 Some pioperties of the Smith-Puicell radiation pattern

The calculation of the emitted power requires the computation of the radiation factor
given by the solution of a grating problem. Knowing this radiation factoe obtains the
expression of the radiated power for one single electron, and integrating over the bdam profi
the power emitted by the electron beam. For a ribbon-like electron beam of width b muct
smaller than the width B of the grating and of height Rg>Mith a constant current density J
and passing over a grating of period D and length L, the expression of the power emitted ii
order n per unit solid angle is given by £4.87):

dP eJybL . cos’n cos’Z
dQ = (2)4me,Din (B

R,(n, Q)2
— sinn) 2 (y2 + con sin’g) °° L |

This expression is suitable to illustrate some peculiarities of the Smith-Purcell radiation
pattern.The frst factor characterizes the experimental setup, including the current geesity
size of the electron beam, the size and period of the grdtegsecond factpehich will be
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called G, is a function of the electron eperand the angles of observatiom{) for the
spectral order riChe third factor is the radiation factor

Fig. 3.1 shows then dependence of the factor G at & and 50MeV. For high
enepies, G strongly increases in the forward directipt®0° where short wavelengths are
emitted.A more detailed study shows that for relativistic electrsl and nean=0° a
linear dependence with the eggiis observed.

Fig. 3.2 shows the( dependence of G for the same gms. A strong efect of
polarization seems to appear when the gnesf the incoming electrons increasédse
radiation is concentrated in tlde0° plane where the Smith-Purcell radiation is H polarized.
This efect is more pronounced for observation angles nmga@°. Under favorable
circumstances, the stroggdependence of G could be used to design a quasi monochromatic
and polarized radiation source.

The intensity of the emitted Smith-Purcell radiation depends, of course, on the behaviou
of the radiation factorwhich itself strongly depends on the aepof the electron, on the
grating profie and on the direction of observatiaon{). This radiation factor will be studied in
the following sections.

0.30 : : 10° | |
10° F (b)
0.25
10* —
0.20 10° ]
— — 2
= < 10° —
g; 0.15 é
© O 10" -
0.10 10° ]
10" —
0.05
107 —
0'00 10—3 | | | | |
90 60 -30 0 30 60 90
n (deg) n (deg)

FIGURE 3.1: The n dependence of5(3,n,{) for (=0° and election energies of (a) 100 keV
and (b) 50 MeV
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FIGURE 3.2: The ( dependence ofG(3,n,{) for several angles) and election energies of
(a) 100 keVand (b) 50 MeV.

3.2 Summary of the methods

In the previous chaptedifferent methods to solve the grating problem in order to obtain
the radiation factor have been presented. Some of these methods are restricted to spec
grating profies, as for the MEM or the Rayleigh method, some others are of general yalidity
but their application can lead to long calculations or to numerical problems (IPPM, or IM when
the grating profe has edges)Yechniques which permit to overcome these problems in some
cases have been detailed. It is not the goal of this work to test allfdremtifpossible methods
and to find the advantages or disadvantages of them. Instead, the most simple and faste
method was chosen wherever its validity had been establiBhedollowing techniques have
been used:

For shallow sinusoidal gratings (h/D<0.14), the Rayleigh method was used, with a point
matching technique to solve the boundary condition.

For rectangular gratings, the Modal Expansion Method was used.

For deep sinusoidal gratings (h/D>0.14) and for triangular gratings, the Integral Equation
Method was used.

52



A priori, these methods are rigorolise numerical solution however requires truncation
of infinite series, or discretization of continuous functioffserefore the weak point of all
these methods is the congence of the solutions when the number of terms taken into account
is increasedThen the diferent criteria discussed in paragrapé were used to check the
validity of the obtained results.

3.3 Shallow gratings at¢ = 0° and¥, = (°

The intensity of the emitted Smith-Purcell radiation is proportional to the radiation
factor, which strongly depends on the grating peoéind on the electron eggr as one can
conclude from the previous theoretical works on the Smith-Purdetitefhe efect has been
intensively studied both theoretically and experimentally for lowggnelectrons in the order
of some hundreds keYlowever no predictions have been made for relativistic electrons with
enegies lager than IMeV and only one experiment has been made in the far infrared range
(A~1mm) with 2.3MeV electrons. In all cases, the electrons were moving perpendicular to the
grating rulings.

Figs.s 3.43.7 present some results of the calculations of the radiation factor
\R_l(r]n, 0)|2 for relativistic electrons with engies in the 1 to 10MeV range moving
perpendicular to the grating rulingsll values have been calculated for thestfipropagative
order n=-1 and for observation angle€° for which the intensity is expected to begkest and
are restricted to anglep<45° where a reliable convgence of the numerical solution of the
grating problem has been obtained.

The results are given for shallow gratings with parameter h/D=0.1 for four types of
gratings: the sinusoidal prtej the rectangular prédi with parameter a/D=0.5, the symmetric
triangular profie and the echelette priafifor which we used respectively the Rayleigh method,
the modal expansion method and the integral equafidres.results were veréd using the
various tests described above.

In Fig. 3.4then dependence of the radiation factor for a rectangular gratindepnofh
parameters h/D=0.1, a/D=0.5 is given for several electromgieseoetween 1 and 100eV.
Strong variations of the radiation factor can be seen near certain gaiggdan the forward
direction. These resonances are well known in spectroscopy and are WeémoeeRayleigh
anomalieq16], [39]. They occur when an evanescenfrdidted wave becomes propagative.
The angles where these anomalies appear are given by the cogditrof from which one
obtains:

-1
sinn,, = (n+1)nB t1 (3.1)

n being the order which becomes radiatingQ). The calculations have been carried out
on an angular mesh of 0.26xcept near these anomalies, where the radiation factor has been
calculated at anglerﬁNi(107,104,103).
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In most cases a strong decrease of the radiation factor is observed at angigs Imatar
in some cases a strong increase of the radiation factor is observed (see3hthgsharp
peak just beforg=20° for an electron engy of 2MeV). At these angles, the Smith-Purcell
radiation is strongly collimatedlhe radiation factor decreases with increasing gnehe
enegy dependence being moderate for electrongee®rof 1 to SMeV but very strong at
higher enagies.

For the shallow sinusoidal grating with h/D=0.1, the calculations have been made usinc
the Rayleigh method which is the fastest and \esfifor several angles using the integral
method. Fig3.5 shows the obtained resulfhe radiation factor decreases strongly with
increasing engly as for the rectangular grating with h/D=0.1 and a/D=0.5, but contrary to the
results obtained for this rectangular grating,ijlteependence is rather smooth andttlations
are restricted to a very narrow angular interval na&lbad-Rayleigh anomalAlso for lower
enepies (1-10MeV), the radiation factor is almost constant or even increases in the forward
direction, in contrary to the rectangular grating, for which it tends to decrease in the forwarc
direction.

For the symmetric triangular grating and the echelette grating, which is also often
referred to as the blazed grating (see Bi§), the calculations were carried out using the
Integral Method, approximating the ptefiby it's Fourier series; therefore, one expects
accurate results when the local radius of curvature of theepisfsmall compared to the
wavelength at the approximated edges. For the considered range of angles gied andr
gratings, this is achieved when one takes approximately thesi6deficients of the Fourier
series.The convegence of the results was vezdi by increasing the number of points for the
surface discretization. For the blazed triangular lgratfine results were also veeifi using the
reciprocity theorem.

Figs.s3.6 and3.7 show the results obtained for a shallow symmetric triangular grating
with h/D=0.1 and a blazed grating with blazing argle10° respectivelyFor the symmetric
triangular grating a lower radiation céiefent than for the shallow lamellar and sinusoidal
gratings is observed, for electron emes of 1 to 5 MeVFor higher engjies, the results are
comparable The Wood-Rayleigh anomalies are clearly visible, but ngdapeaks can be
observed as for the lamellar gratifidie behaviour of the radiation céiefent for the shallow
blazed grating is very similar to that of the lamellar grafifigeWood-Rayleigh anomalies are
very pronounced and strong resonances are visible at angles just before the angle where 1
anomalies occur

_— —_ — T — T Profie of a symmetric triangular grati

M Profile of a blazed triangular grating ¢
ap echelette grating

FIGURE 3.3 : Frofiles for symmetric and blazed triangulargratings.
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FIGURE 3.4 :
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FIGURE 3.5:
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For all the considered prtds a strong decrease of the radiation factor when increasing
the electron engy above some 10 MeWas observed tentative explanation is formulated
as follows: when increasing the electron egervy approaches (c and the factory,
(characterizing the exponential decay of the incidehd)fibecomes closer and closer to zero.
The limiting case (y=Cg) would lead toyg=0; in that case, the incomingelil would be
propagative and as a consequence, the zero order would also be propagaivan be
interpreted from a mathematical point of view as \tf@d-Rayleigh anomaly for the zero
order At the exact location of th&/ood-Rayleigh anomalya strong decrease of the radiation
factor is often observed. By analpggoming closer to théNood-Rayleigh anomaly
corresponding to the zero order by increasing the electromyemeuld explain that the
intensity of other radiative orders decrea3é®refore it seems not of great interest to use high
enegy electrons for radiation production using the Smith-Purcédicefin the considered
angular range.

3.4 Influence of the grating depth at = 0° and ¥, = (°

In the previous paragraphs shallow gratings with parameter h/D=0.1 have beer
considered. Deep gratings could lead to higheciehcies. Figs3.10-3.11 show the results for
the radiation factofR_, (n, 0) \2 obtained as a function of the grating depth for two types of
gratings: the sinusoidal grating and the rectangular grating wal fiarameter a/D=0.5 for
electrons with engy in the 1-10 MeMtange moving perpendicular to the grating rulinigee
same angular mesh as in the previous chapter has been us8® $hgws the color map used
in Figs.3.103.11.

For rectangular gratings, a detailed study has been carried out for parameter a/D=0.5 ar
parameter h/D varying from 0.01 to 0.5 in steps of 0.01. Because the radiation factor is ver
large in the backward direction, the data have been tat ofiaximum value of 4 for a better
representation, and the color map of Big has been used. For very shallow gratings (h/D->0)

a strong decrease of the radiation factor is observed which corresponds to the fact that ¢
electron moving parallel to aafl surface does not emit radiation. It is interesting to note that
the best results are obtained for very shallow gratings with h/DH@eluse of deeper gratings
seems to be of no advantage in this gneange.These results are quite féifent from the
previous calculations for Smith-Purcell radiation produced by lowggredectrond30]. It is

also worthwhile to note that small errors in the grating lerafnay constitute a severe
restriction. In order to obtain high radiation emission for the rectangular grating with a/D=0.5
on a lage angular range a value of h/D clos®tb is needed. In the forward direction deep
gratings can be helpful to enhance the emission foM&\2 electron.

Sinusoidal gratings with parameters h/D=0.01, 0.05, 0.1, 0.15, ..... , 0.4 have beer
studied. In that case, the data are presented on a logarithmic scale. For such gratings ratt
smooth curves are obtained for all the consideredgeseand for radiation in the backward
directionn<0. For deep sinusoidal gratings with h/D>0.30 strong variations are observed in
the forward direction where shorter wavelengths are emittegl best results are obtained for
shallow and moderately deep gratings with h/D=0.1- 0.25. For deeper gratings the radiatiol
factor decreases, especially in the forward direction. In some cases havstveng increase
is observed just befor@/ood-Rayleigh anomalies and at these angles the Smith-Purcell
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radiation is strongly collimated as for the shallow rectangular grating studied previously
Except for deep gratings and in the forward direction, the variations of the radiation factor with
the grating depth are rather smooth, which indicates that the Smith-Purcell emission would nc
be very sensitive to small errors in the deofi

The study of the inflence of the grating depth for triangular gratings has not been
carried out. Howevear similar feature as for rectangular gratings has been observed for blazec
gratings[67]: theWood-Rayleigh anomalies are very pronounced and often a strong increase
in the radiation factor was observed just before an anoifiaé/best results have also been
obtained for shallow gratings for the simulations using relativistic electrons upMe\&0

Therefore, we conclude that, in general, shallow gratings appear to be fhecteef
than deep gratings when using relativistic electrons moving perpendicular to the grating
rulings and when the observations are done in the plane perpendicular to the grailhg.
study of the grating performance in function of its characteristics and of the electrgn ener
would be necessary to optimize a Smith-Purcell experiment and other types of grating couls
lead to diferent conclusions.

| ! | ! | ! | ! |
0 1 2 3 4

FIGURE 3.8: The color map used in Figs3.9-3.10
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FIGURE 3.9: The radiation factor for a rectangular grating as a function of observation
angle n and grating depth for {(=0° and W1=0° and for electron energies of
(a) 1 MeV and (b) 2 MeV.
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FIGURE 3.10 : The radiation factor for a rectangular grating as a function of observation
angle n and grating depth for {(=0° and W,=0° and for electron energies of
(@) 5MeV and (b) 10 MeV.
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FIGURE 3.11 : The radiation factor for a sinusoidal grating as a function of observation
angle n and grating depth for {(=0° and W1=0° and for electron energies of
(a) 1 MeV and (b) 2 MeV.
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FIGURE 3.12 : The radiation factor for a sinusoidal grating as a function of observation
angle n and grating depth for {(=0° and W1=0° and for electron energies of
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3.5 Full (n,2) dependence of the radiation factofor ¥, = (°

Previous studief88] have shown that for low erggr electrons of about 10&V, Smith-
Purcell radiation is more intense out of te0° plane, but no data are available yet for
relativistic electrons. In the following, two types of grating will be discussed: the rectangular
grating with parameters h/D=0.1 and a/D=0.5 and the sinusoidal grating with h/Dk6.1.
radiation factor has been calculated for angled45’ with the same angular mesh as before
and for angles ®({<85° in steps of one degreEhe electrons are moving perpendicular to the
grating rulings, therefore when using the reference frame described byl.Bjgthe
calculations can be restricted to positive anglésee equation§1.20), (1.38) and( 1.39)
for W1=0°).

Figs.3.15and3.16show the results obtained for an electron gyef 1 MeV displayed
on 3D graphs with three d&rent points of view for a better understandiiige view is
specifed in spherical coordinates by the azimuth and the elevation of the view poid.1Big.
illustrates the coordinate system. In order to arrive at clear and understandable drawings, tt
following coding of the information has been used: the distance from a point to the origin is
given by:

log,o(|R_y (N 4)|?) +3 (3.2)
The color of a point of a surface is proportional to:

R1 (N, ¢ 2 (33)

Viewpoint
~
_

~
P - |
|

P .
origin | /~ Elevation

|

|

- |

Azimuth \\\l

FIGURE 3.13 : Coordinate system used in Figs3.15and 3.16
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FIGURE 3.14 : The color map used in Figs3.15and 3.16
Fig. 3.14shows the color map used in Fi§sl5and3.16according to E¢3.3.

As in the (=0° plane, a strong increase of the radiation factor is observed for the
rectangular grating with h/D=0.1 and a/D=0.5 just befovdoad-Rayleigh anomalyhere a
strong decrease of the radiation factor occline anomalies are strongly pronounced at all
angles(. A similar behaviour has been observed for this grating at 1, 2, 5 avid\10

Contrary to the rectangular prefj the radiation factor pattern for the shallow sinusoidal
grating is very smooth, except in a small angular range néfod-Rayleigh anomalys for
the (=0° plane.The radiation factor patterns at 1, 2, 5 andViHY are very similar

For both gratings and at all considered gigs, the radiation factor increases with
increased angleé especially at backward anglgs but also in the forward directiom*0).
This property has been also observed at 2, 5 andel0
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FIGURE 3.15: The radiation factor for a rectangular grating as a function of observation
angles(n,¢) for W1=0° and for an electon energy of IMeV. The rectangular
grating parameters are h/D=0.1 and a/D=0.5. (a) viewpoint (0,0), (b) viewpoint
(0,90), (c) viewpoint (135,30).
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FIGURE 3.16 : The radiation factor for a shallow sinusoidal grating as a function of
observation angleqn,{) for Y4=0° and for an electon energy of 1IMeV. The
grating parameter is h/D=0.1. (a)viewpoint (0,0), (b) viewpoint (0,90), (c)
viewpoint (135,30).
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3.6 Influence of the tilting angley,

Eq. 1.37shows that rotating the grating around a vertical axis with respect to its surface
provides an easy way to change the emitted radiation, because the apparent period as seer
the grating changes, and a continuous wavelength tuning is possible without changing th
electron speed, nor the direction of observation, which is interesting from an experimenta
point of view However this property is useful only if the power emitted by the electron beam
remains high when rotating the grating, which means that the radiation factor has to be kef
large.

Fig. 3.17shows the results as a function of the tilting anglevarying from Oto 30 in
steps of 5 and as a function the observation arfijjdéor ¢,=0°: the calculations were carried
out using thef,,9,,) reference frame described by Rig, which is more representative when
W, #0° than the i§,,(,) reference frame usually used whgh = 0° [29][32]. Two cases
have been considered: an electron gynef 2MeV and a rectangular grating with a/D=0.1 and
a/D=0.5 and an electron eggrof 10MeV and a shallow sinusoidal grating with h/D=0.1. For
these two gratings, interesting results are obtained Wher 0°. The data are presented on a
logarithmic scale.

For the lamellar grating with a/D=0.1 and h/D=0.5 d#&V and in the forward
direction, the radiation factor decreases slowly when tilting the grativgcurves are always
characterized by strong variations of the radiation faaspecially neaiWood-Rayleigh
anomalies in the forward direction. For the sinusoidal grating BeM) the radiation factor is
almost constant in the forward direction, and increases in the backward directiorthyhen
increases from O to 20For lager values ot , the radiation factor decreasg&be curves for
the sinusoidal grating are smooth, with variations restricted in a very narrow angular range
near the position of th&/ood-Rayleigh anomalies. For both gratings, similar curves are
obtained at 1, 2, 5 and MeV.

It appears then that a grating which exhibits a high radiation factor When 0° and
therefore for which one expects a high intensity is not necessary suitable for tuning the emitte
radiation according to E4.37. The radiation codicient can be very low and therefore a weak
emission of radiation is expected (sinusoidal grating a#é0 for ¥, = 30°). Furthermore,

a detailed investigation shows that for the considered lamellar grating, the pBgitbthe

peak for the maximum of the radiation factor moves wHgnchanges, and therefore the
wavelength of maximum emission changes with and with8,,. Then the interest of tuning

the wavelength by tilting the grating decreases, because the direction of observation ¢
maximal usefulness changes also.

A large tuning of the radiation needs a rapid dependence of the wavelength with the
angleW,. Eq.1.37shows that the dependence is proportiondltoos¥, . As a consequence,
a strong dependence of the radiation factor with respégt tbappens for lge values ot
only: an experiment designed to tune the wavelength by changing the angle of incidence of th
electron beam necessitates a grating optimized fge langlesV; and for which the radiation
factor is high in a ked directiorB,
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FIGURE 3.17 : The radiation factor as a function of tilting angle¥; and angle6,, at ¢,=0°
for: (a) a lamellar grating (a/D=0.1, h/D=0.5) and an electm energy of 2MeV.

(b) a sinusoidal grating with h/d=0.1 and an electn energy of 10MeV.
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3.7 Emission diagrams

Figs.3.18to0 3.25show power distributions of Smith-Purcell radiation expressed in mW/
sr for some of the electron egars and gratings discussed abdvéwvo-dimensional Gaussian
beam profe was assumed, but no digence of the electron beam was considerad. beam
axis is at a distanceyabove the grating, which is shielded against electrons atT4¥.
radiated power is given by EQ1.88):

dp _ e€iglD

q0 - m‘3 EbosZnCOSZZEJIR \ZDlerfD Elexp( so){l—erf(g—sé))}

0/8o,

with iy = Jy210, 0, being the total current = ﬁoz/him, Sp = Zg/ hip

In the calculations, electron beam parameters achievable with modern linear acceleratol
have been used, i.e. a peak currgptlOA and o,=0,=1.5mm. The beam axis is at
zp=1.5mm which corresponds t§,; at electron engres of 10MeV and wavelengths of about
1 mm (observation at angienear O for a 1mm period grating)The grating dimensions are a
width B=5cm and a length L=10m with a period D=Inm.The beam and grating parameters
were not optimized for maximizing the radiative power

Figs. 3.18 and 3.19 show power distributions for shallow sinusoidal (h/D=0.1),
rectangular gratings (a/D=0.5 and h/D=0.1) and blazed grating ¢yith0°) and for electron
enepies of 1, 2, 5, 10, 50 and 1MeV. The plane of observation is perpendicular to the
grating surface (i.e. a=0°) and the electron beam is moving perpendicular to the grating
rulings (i.e.W1=0°).

For the shallow sinusoidal grating, the emission is higher in the forward direction, for
short wavelengths and the emission increases when increasing the electgynvatiera
maximum for electrons of 1leV. For higher electron ergies, the emission decreases again.

For the rectangular grating, the emission is concentrated in sharp peaks, generall
located just before #/ood-Rayleigh anomalyThe maximum of emission is obtained at a
rather low electron engy of 2MeV and for longer wavelengths than for the sinusoidal
grating.

For the shallow blazed grating, the emission is also concentrated in sharp peaks locate
before Wood-Rayleigh anomalies and the emission is maximum for electrogienef 2-
5 MeV, but with lower values than for the lamellar or the sinusoidal gratings.

Due to the lower radiation cdifient calculated for the shallow symmetric triangular
grating with h/D=0.1 (see Fig.6), the Smith-Purcell emission is much lower than for the
shallow lamellar sinusoidal and blazed gratings, and this grating seems not interesting for
Smith-Purcell radiation production.
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FIGURE 3.18 : Spectra of SPradiation in first order at (=0° and W;=0° using a rectangular
grating with B=5 cm, L=10cm, D=1mm, h/D=0.1, a/D=0.5). Gaussian beam
profile with oy=0,=1.5mm at z=1.5mm. Peak current of 10A. Electron

energies of (ajl MeV, (b) 2 MeV, (c)5and 10MeV, (d) 50and 100MeV.
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FIGURE 3.19 : Spectra of SPradiation in first order at {=0° and ¥1=0° using a sinusoidal
grating with B=5 cm, L=10cm, D=1mm, h/D=0.1. Gaussian beam mfile with

0y=0,=1.5mm at 7Zg=1.5mm. Peak current of 10A. Electron energies of
(@) 1 MeV, (b) 2 MeV, (c)5and 10MeV, (d) 50and 100MeV.
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FIGURE 3.20 : Spectra of SPradiation in first order at {=0° and W1=0° using a blazed grating
with B=5cm, L=10cm, D=1mm, 0,=10°. Gaussian beam pofile with
0y=0,=1.5mm at z=1.5mm. Peak current of 10A. Electron energies of
(@) 1 MeV, (b) 2 MeV, (c)5and 10MeV, (d) 50and 100MeV.
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Fig. 3.21shows a comparison of Smith-Purcell spectra calculated wittie\selectron
beam withig=10A and o,=0y=1.5mm passing over a grating a=4.5mm and diferent
shallow gratings with sinusoidal or lamellar pl@fA set of gratings with proper parameters
could be used to tailor the emission to the experimental needs, adapting the characteristics
the Smith-Purcell spectr@he shallow sinusoidal grating emits more at short wavelengths,
while the three considered rectangular gratings exhibit a peak of emissionfea¢ndif
wavelengths.

Fig. 3.22 shows spectra calculated for anin period grating and several electron
enegies between 5 andMeV (with same beam parameters as before). Continuous tuning of
the peak intensity in the Smith-Purcell spectra is possible by varying the electrgy: ¢ner
peak of emission is shifted from 1.04 to 1@ when the electron emgrincreases from 5 to
8 MeV.
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FIGURE 3.21 : Comparison of Smith-Purcell spectra in the frst order at (=0° and W¥,=0°
using a 5MeV electron beam and diferent gratings with B=5cm, L=10cm,
D=1mm. Gaussian beam pofile with o,=0,=1.5mm at z;=1.5mm. Peak
current: 10A. (a) rectangular grating with h/D=0.1, a/D=0.1; (b)rectangular
grating with h/D=0.1, a/D=0.5; (c)rectangular grating with h/D=0.1, a/D=0.9;
(d) sinusoidal grating with h/D=0.1.

75



12 T
L @ () (© (9 _

10 — —

dP/dY (mW/sr)
|
|

1.0 1.1 1.2 1.3
A (mm)

FIGURE 3.22 : Smith-Purcell spectra in the fist order at {=0° and ¥,=0° using a rectangular
grating with B=5cm, L=10cm, D=1mm, h/D=0.1 and a/D=0.1. Gaussian
beam profile with oy=0,=1.5mm at z=1.5mm. Peak current of 10A.
Electron energies of (a) MeV, (b) 6MeV, (c) 7MeV, and (d) 8MeV.

Fig.3.23shows emission diagrams as a function of observation angled( calculated
when using a lamellar grating with h/D=0.1 and a/D=0.5 for an electron beagy esfer
2 MeV and using a sinusoidal grating with h/D=0.1 for an electron beamgyeoktOMeV for
an angléd,=0°, for which a reasonable intensity was calculate@at. The beam parameters
(FHWM, position etc..) and the grating dimensions are the same than in the previous
calculations A pseudoplot has been chosen to illustrate the properties of the emission with
observation angles and( for the x- and y-axis and coloration proportional to the intensity of
the emissionThe color map is described on theuiie itself. Due to the cogfiration of the
experiment, the emission is symmetric with respedt &md the fyures have been drawn for
positive angleC only. The emission for the lamellar grating is noticeable in the forward
direction and is concentrated in narrow bands just befdwed-Rayleigh anomalies and
decreases when increasiggThe lagest intensity is emitted ne&=20° and for angl€<10°.
The radiation diagrams exhibit similar properties at 1, 2, 5 alMeM0 When using a shallow
sinusoidal grating, the emission is concentrated in the forward directiop=#&%° and for
(<3°. A similar behaviour has been noticed at 1, 2, 5 andd\
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FIGURE 3.23 : Spectra of Smith-Purcell radiation in the first order as a function of angles)
and ¢ for W,1=0°. (a) using a ectangular grating (h/D=0.1, a/D=0.5) and a
2 MeV electron beam. (b) using a sinusoidal grating (h/D=0.1) and a MeV
electron beam. Same beam parameters and grating size as befor
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Fig.3.23 shows emission diagrams as a function of the angle of incidéna#f the
electron beam with respect to the grating rulings direciibe. calculations were carried out
for angles of observation 289,,<135 and¢$,=0° using a rectangular grating with parameters
h/D=0.1 and a/D=0.5 for an electron beam gyef 2MeV and using a sinusoidal grating
with h/D=0.1 for an electron beam eggrof 10MeV. The grating size and beam parameters
are the same than in the previous calculati®hg. results are presented as a function of the
wavelength using Eq.1.37). ForW;=0°, reasonable intensities have been calculated in these
two confgurations (cf. Figs3.18b) and3.19c)).

For a 2MeV electron beam interacting with the considered rectangular grating the
maximum intensity is always observed in sharp peaks b¥foos-Rayleigh anomalie3he
intensity decreases slowly when increasing the a#gleut reasonable values are obtained up
to W,=25°, which permits a tuning of the wavelength within 10% akedfiangled,: the 10%
correspond to 1/cos(2pb Unfortunately the angled,, corresponding to the maximal intensity
changes when tilting the grating and therefore tuning of the radiatiorficulliby this way
The curves calculated at 1, 5 andMéV are very similar

For a 10MeV electron beam interacting with a sinusoidal grating with h/D=0.1 the
maximum of emission is always observed @gr45°, but the intensity decreases very fast
when increasing¥; and very low values are obtained whé{>10°. Similar results are
obtained at 1, 2 andMeV for this grating.

Fig. 3.25shows the spectrum of Smith-Purcell radiation calculated fdvie\2electron
beam coming at an angi#é,=20°, interacting with a lamellar grating with parameters h/D=0.1
and a/D=0.5 and for observation angles°<46<45° and 43<6,<135 (cf. Fig. 1.4). The
result is presented as a function of the agglend of the wavelength using EdL.37). The
same color map as in F8y23has been used but going fronto® mW instead of going from
0to10mW, in order to enhance the contrafhe maximum of emission is 5BW at a
wavelength of about 0mMm nearg,=0°. The most remarkable feature is that the emission
pattern is not symmetric any more with respect to the apyglar, which is equivalent, with
respect to the electron beam trajectdrye emission is concentrated in peaks n&aod-
Rayleigh anomalies, but the maximum of emission is not observedpfe0°, as it was
noticed whenW,=0°, especially in the forward direction at shorter wavelengths.

Therefore, it seems that tilting the grating does nfdrcd very easy way to tune the
wavelength for relativistic electrons in the 1{leV range and using the considered shallow
gratings to produce radiation at-4afrared and millimeter wavelengths, because either the
intensity becomes very low when tilting the grating or the direction of maximal intensity
changesWhen it is possible, using a set of gratings or tuning the electrogyesegms easier
as shown in Figs3.18t0 3.22
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FIGURE 3.24 : Spectra of Smith-Purcell radiation in the first order as a function of angled;
for 45°<0,<135 at ¢$,=0°. The results ae presented as a function of the
wavelength using Eq.( 1.37). (a) using a lamellargrating (h/D=0.1, a/D=0.5)
and a 2MeV electron beam. (b) using a sinusoidal grating (h/D=0.1) and a
10 MeV electron beam. Same beam parameters and grating size as be&for
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FIGURE 3.25 : Spectrum of Smith-Purcell radiation in the first order as a function of the
wavelength and the observation angl®, for W¥,=10° for a 2MeV electron
beam interacting with a lamellar grating with h/D=0.1 and a/D=0.5. Same
beam parameters and grating size as befer Same colomap as Fig.3.23

3.8 Discussion

For wavelengths of the order of a millimeter and for relativistic electrons witkgieaer
larger than IMMeV, the interaction height is lge: for a 10MeV beam, [[1l.6A at (=0°.
Therefore careful alignment of the electron beam close and parallel to the grating surface is n
mandatory for production of photons in theifarared or millimeter range and electron beams
with a diameter of the order ofmm would eficiently interact with the gratingfhe fnite
divergenceO of an actual beam can be neglected as lor@xhs,/L (c.f. paragrapii.6.?.

The preceding calculations show that the Smith-Purcell radiation produced by relativistic
electrons exhibits some interesting features. Electron beams with modergteieribe 1 to
10MeV range could be used to produceifdrared or millimeter radiation by interaction with
millimeter period gratingsThe use of higher electron egers seems to be of no advantage in
this spectral rangd.he radiation characteristics can be adapted to the experimental needs by
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proper choice of the experimental cguiiation, choosing the adequate grating and electron
enegy. A continuous tuning is also possible by varying the angle of observation.

Rotating the grating (i.e. changing the anylg) is a convenient way to tune the
wavelength of the radiation without changing the grating, the direction of observation or the
electron engy, operations which could be fidult in an experimental cogfiration but a
grating optimized for such a cogfiration has to be used: higHieiency at a fied angled,,
and for a lage variation ofl/ cos¥, in order to provide a lge tuning of the wavelength with
a reasonable intensity

By collimating the Smith-Purcell radiation into a solid angl@=coqn)AnAl{ one
obtains radiation of bandwidm/)\zcos(n)Ar][B‘l—sin(r])]"l for the frst propagative order
Using a SMeV Gaussian electron beam with a peak current & a@do,=0,=1.5mrad, the
center of the beam being .5mm, interacting with a lamellar grating with h/D=a/D=0.1,
a peak photon uix of 51 3 photons/s in a solid angle ofusr can be obtained (cf. the
maximum of curve3.21 (a) nearA=1 mm). This photon #ix would be quasi-monochromatic
with a bandwidthANA~103. For comparison, a An? perfect blackbody at 2000 emits
108 photons/gdsr at Imm for the same bandwidth.

It has to be noted that the technological needs in designing a Smith-Purcell source ar
modest compared to other sources like synchrotron radiation sources on electron storage ring
the heart of the source would be an accelerator of moderaty emel relatively low cost and
the radiation device is a grating which can be easily produced for radiation in the far infrarec
or millimeter range, as shown by the experimental results obtained by Batd§5] using
a 3.6MeV electron beamA precise comparison between a Smith-Purcell source and other
sources like synchrotron radiation sources or black-body sources remains to be done
considerations like costs, facility to built and to use have to be taken into account with the
sources characteristics to determine their actual performances. It has to be noted that the tir
structure of these sources isféient (continuous for the blackbqdi\W for a storage ring and
pulsed with picosecond resolution for a linear accelerator), which leadgeedifpossible
applicationsThe performances have also to be compared with those of Free Electron Lasers
which are based on a stimulateteet and therefore are powerful sources.
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4.1

CHAPTER4  The GELINAfacility

In the previous parts, a theoretical description of the Smith-Purtstt @fas presented,
and calculations for electrons in the 1 to M€V enegy range have been carried ofih
experimental study of the radiation produced by relativistic electrons interacting with optical
gratings was carried out at the GELINBKility, which is described in the next sections.

The GELINA accelerator

The Geel LineaAccelerator (GELINA) is an S-band linear accelerator built in 1965 and
upgraded in 1976 and 19888][69]. Up to now the accelerator was mainly used for neutron
differential cross section and neutron spectroscopy experiments using a neutron source at t
end of the ©® beamline.The accelerated electrons interact with an uranium rotatiggttés
produce neutrons by &) processA post-acceleration pulse compression system permits to
deliver an electron pulse of less thanslduration. Using up to 408 long neutron itht
paths, this facility allows to carry out neutron measurements with excellegt/easolution.

The diferent parts of the accelerator are the injeaoprebunching cavitya standing
wave buncher and two 6 m long accelerating sections. In the burnbbeelectrons are
accelerated up to 2@eV and grouped together in a structure which allows the acceleration in
the next two travelling wave sectiofie maximum engy of the electrons at the end of the
last section is 14MeV. At full current and short pulse length, the eyedispersion is 50%
(FWHM). This lage intrinsic electron engy spread is used in a compression magnet to
reduce the time width of the electron pulses.

The triode electron gun has a heated dispenser cathode which is BOk¥t with
respect to the anode (at zero potentikttle grid is biased at KV with respect to the cathode
to prevent electrons from being emitted continuauShe gun is triggered by applying a
positive pulse to the grid, generated by adabandwidth three-stage amgifiThe gun
delivers a peak current of up to @&t 80keV to the prebunching cavityhe pulse time width
IS tunable between 1 and 4us.

The prebunching cavity and the standing-wave buncher group the electrons together int
structures called microbunches to allow the acceleration in the two successive travelling-wav
sectionsThe electron engy is 20MeV at the entrance of the acceleration section.
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After acceleration in the two sections each electron pulse consists of a sequence ¢
microbunches having a width of the order ofpkOand spaced with 0.3 corresponding to
the 3GHz frequency of the klystrons delivering the travelling waldee filing time of the
acceleration cavities is of the order gfid Therefore at short pulse lengths and high current
the accelerator delivers electron pulses consisting of microbunches having a sequentiall
decreasing engy ranging from 140 to 7MeV: a microbunch travelling through the
accelerator fids on its way less stored electromagneticgnavailable for acceleration than
its forerunner because that one already took part of the stored electromagneggcte ey
accelerated.

Figure 4.1 shows the GELINAaccelerator with the power suppli@$e accelerator is
installed in a special gallergeparated from the neutronger hall. The power electronics is
installed in a separate hall.

At the exit of the machine the electron beam is transported to the neugenlgra
12m long beam lineThe electron pulses can be compressed in & B&0ding magngi69]
where the dispersion of electron ayies leads to a dispersion of electron trajectories, the
highest-enagy bunches enteringrét having a longer trajectory than the lower gger
electrons entering lateBince all electrons have almost the same speed very close to the spee
of light, at exit of the magnet the microbunches are grouped togetdacing the total pulse
width to about Ins, as illustrated indure4.2

STANDING WAVE BUNCHER
TRIODE GUN

PREBUNCHING CAVITY

IONIC PUMP
100 | 0] | Cmm
: H LI LU \VH I 1 I N e O S I h
INJECTOR @ [ - | @ [ ] KRR
ZS\F/’VPTES FOCUSING COILS 7:
| MICROWAVE WINDOW
\&\:\ 8 \ S\ WAVEGUIDES

UHF DEVICES
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MASTER ‘
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|

ATTENUATORS
PHASE SHIFTERS POWER MODULATOR 2
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FIGURE 4.1: Scheme the GELINAlinear accelerator
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FIGURE 4.2 : The compression magnet: the actomaticity of the electton beam is used to
reduce the pulse length via a spatial dispersion.

Taking proft of the spatial separation of the microbunches in thé Bé0ding magnet, it
might be possible to isolate one single bunch gbd@ut of the 30 bunches in ad®long
pulse. This possibility combined with the tunable repetition rate of the linear accelerator
would provide a unique facility for time-resolved measurements using X-rays.

Table4.1 shows typical parameters of the GELIMAcelerator

TABLE 4.1 : Beam parameters mostly used.

beam energypulse length  frequency | peak currentmean currenheutron burst
(MeV) (ns) (Hz) (A) (HA) (n/s)
without compression
100 10 800 12 96 5.6 108
100 10 100 12 12 7.0 107
with compression
100 0.6 800 >100 75 4.6 169
without compression for OTR and Smith-Purcell experiments
20-120 1000 50 0.02-0.1 1-5 /

The repetition rate of the accelerator can be tuned continuously between 1 &fw 800
using a pulse generator driven by a Macintosh lici.

The peak current is adjusted by tuning the grid-cathod potential. In order to provide low
current electron beams, this potential was decreased as much as possible. Simultémeously
heating of the cathode was decreas®th this method, it was possible to generate time-
averaged currents of the order giiA, approximately eight orders of magnitude smaller than
the normal working regime of the accelerdif].
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The electron beam empr was selected by varying the RF power injected by the
klystrons into the two accelerating sections.

The beam shape and the beam position were tuned using a set of focusing coils, dipole
guadrupoles and steering coils located at the accelerator and along the beam line.

4.2 The target hall

The experiments of the present work were carried out using the main beam line in the
target hall. Figure4.3 shows the inner part of the ¢gat hall. The compression magnet, the
neutron taget and the entrances of thigliit-paths are visible on top of the drawing. For safety
during installation or maintenance and for improving the life-time of the materials, the
radiation physics facilities are installed at the beginning of thgetidrall, as far away as
possible from the neutron tmt. The outside is shielded against radiation (neutron and
gamma-rays) by 3.1 concrete wallsTwo holes were drilled into the concrete to permit the
extraction of the OTR and XTR beam to a separate hall, where the appropriate detectors a
installed.

Figure4.4 shows the position of the three available beamlines in the GEtdigét hall
and of the magnetic erggr analyser used to measure the beamggné&he dipole magnet
located after the engy analyser directs the beam into the main beam line for neutron
production or into one of the two achromatic éetilons which are used for photo-activation or
XTR experimentsA vacuum chamber has been installed on the main beamline and was usel
for optical transition radiation measurements and for the Smith-Purcell experiments.
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FIGURE 4.4 : Detail of the target hall.

4.3 Measurements of the beam curent

In order to avoid a fast destruction of the radiators, the Smith-Purcell experiments had tc
be carried out at low peak currents, far below the normal working regime of the accederator
fast ferrite is installed at the exit of the acceleratbmeasures the current used for the
experiment and gives the pulse shape. Figuseshows a typical current measurement during
a Smith-Purcell experiment at B&eV.

During the experiments, the neutrongitrused for neutron production was replaced by
an aluminium block working as a Faraday cup. Measuring the current at the beginning and ¢
the end of the beam line, information about the current losses was obtained helping to adju
the electron beam trajectory
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FIGURE 4.5: Pulse shape of a 58eV electron beam measued with a fast ferrite.

4.4 Energy measuements using a magnetic dedttion

A calibrated magnet has been installed at the exit of the accel€atgrled with a
Faraday cup, it constitutes a magnetic gn@nalyserThe current injected into the magnet in
order to deviate the electron beam to the detector is proportional to the electron bear
enepy [70]. This system gives also information on the electrongndispersion. During an
enegy measurement, which takes about one minute to be completed, the electron beam is n
available for the experiment.

Figure4.6 shows a typical engy spectrum of an electron beam used for Smith-Purcell
experimentsThe electron beam empris 85MeV with a dispersion of MeV (FWHM). The
enegy could be tuned between BA&V and 1.0 MeV.
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FIGURE 4.6 : Energy spectrum of a 83MeV electron beam used for Smith-Purcell
experiments.

4.5 The OTR diagnostic tool

Transition radiation is emitted when a dipeda particle crosses the interface between two
media of diferent dielectric constants. It was predicted by Frank and Gigzbut945[10]
and has been thoroughly studied from theoretical and experimental points .ofvéespectral
and angular distribution and the degree of polarisation of the radiation are related toghe ener
and the incidence angle of the electron and are useful fogetharticles beam diagnostic.
After the pioneering work of L.Wftski [11] numerous diagnostic tools in particle
accelerator$/1] have been developed.

At the GELINA accelerator such a beam diagnostic has been installed and gives on-line
information on the beam parametgfg]: the enayy, the size and the divggnce of the beam
are measured.

When a highly relativisticye>1) electron hits a metallic foil the angular distribution of
OTR is given by11]:

d°w e’ 62
doda = F (@0, w) %C Di(y-2+92)2 (4.1)
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whereF (¢, 6, w) is the Fresnel coifient of the foil surfaceThe geometry is depicted
in Fig. 4.7. This radiation is highly directional, close to the specularecgtin, with a
maximum of intensity ad =1/. For an electron beam ofiie divegence the distribution is
given by the convolution f4.1) with the beam divgence.

Focusing a camera on the foil surface, it is possible to measure the current densit
distribution, i.e. the beam prtdi For a perfectly conducting surfade(¢, 6, w) = 1 and the
radiation pattern is circular symmetric around the direction of the speculecticefl with
radial polarizationTherefore no polarisation is measured when focusing at specudsticefl
on the foil for a non divgent beanjl11]. When the camera is focused atnitff, the OTR
angular distribution is measured, from which information about the electrogyesed the
beam divegence is obtainefl1][72]. At GELINA an optical bench with two cameras is
installed, which allows to carry out both measurements simultaneously: a semi-transparer
mirror divides the OTR beam, allowing to focus one camera on the beam spot and the secor
camera on the angular distribution (see Eig).

Due to the high radiation level in thedat hall the observation of OTR is made in a
separate room Bieters away from the OTR chamber through @rh2diameter hole in the
concrete shieldinglhis requires the installation of an appropriate optical belic@GELINA
the total length of the optical bench isf9with a maximum angular aperture at the entrance of
30mrad, corresponding toyblor a 100MeV electron beam. In order to align the optical bench
a laser was installed in the get hall to simulate the OTR beaiffhe positions of the lenses
and the mirror were adjusted in such a way that the laser beam was transported to the positi
of the camera® correct alignment was obtained when tingt ftamera could see the OTR foil
while simultaneously the second camera was able to see the thermal cathode of the accelera
which is some 2@n far away from the OTR foil and simulates a source atiiyfi

Interface

—> Beam axis

Direction of observation

Specular reflection axis

FIGURE 4.7 : Geometry for observation of OTR.
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FIGURE 4.8: OTR optical bench set-up forfocusing at infinity or on the souce.

The calibration of camera 1, used to measure the beamshape, was done inserting
calibrated frame at the position of the radiakar the calibration of camera 2, used to measure
the angular distribution, a picture of afdattion pattern from a small rectangular grid was
used. The resolution was of the order of 1/dn for the size and 1/I@rad for the
divergence. Figurd.9 shows two typical pictures used for the calibration.

FIGURE 4.9 : Calibration of the OTR diagnostic system.
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The images from the two cameras were digitized and stored in a Macintosh computer
Fig. 4.10 shows a layout of the OTR diagnostic systérhe best way to extract the
characteristics of the electron beam out of the observed images would ba talftulated
OTR angular distribution including parameters such as thegeraerd the electron beam
divergences, andoy, to the measured angular distribution. Such a procedure is however time
consuming. For on-line diagnostics an estimate of thegbvee (reliable within 10%) can be
obtained much faster from the contragfyllmin in the angular distributiori73] On-line
analysis was possible using the OTR4.0 application program, a dedicated software written t
extract the electron beam parameters from the picture of the beam and of the angule
distribution[74]. Fig.4.11 shows the front panel of OTR4The top-row images belong to the
electron beam shape; the bottom-row images belong to the angular distribution. Informatior
about the electron ergg, and the size and divggnce of the beam are given.

shielding semi-transparent
wall mirror
35m
CCD with objective
400 cm 85 cm focused on the Al foil
mirror #
¢ * |
O.T.R. beam
shielding
wall
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intensified CCD
focused at infinity
¢ mirror
e beam

(angular distribution) (beam profile)

FIGURE 4.10 : The GELINA OTR diagnostic tool (not drawn to scale).
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During the experiments, the digence of the beam was usually belom&d (FWHM).
For electrons above 3@eV the beam diameter was of the order afifa (FWHM), increasing
up to about 1Gnm at lower engjies.
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FIGURE 4.11 : An OTR analysis of a 94MeV electron beam using the OTR4.0 application
program. The pictures ae displayed in false colors.
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CHAPTER5  Smith-Purcell experiments
at GELINA

Three experiments with relativistic electrons interacting with optical gratings were
carried out using the GELINAacility during September 1993 and January and May 1B%d.
experimental set-up and the results of the measurements carried out during these experimel
are presented now

5.1 Experimental set-up

5.1.1 Insertion devices

Remote controlled insertion devices were uSéay work as one-axis goniometers with
360 rotation rangeThe long translation course permits to insert several radiators like OTR
foils, gratings, Cherenkov radiatoiife power supplies for the stepping motors are driven by
an interface linked to a Macintosh compugeprogram to drive the insertion device has been
written using the LabVIEWsoftware[74][75]. A user friendly interface permits to send the
commands to the motor interface to properly position the radiator in the beafm.1=gows
the front panel of the program.
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FIGURE 5.1: The front panel of the Motor program used to drive the emote contolled
insertion devices.The program can drive up to three motors simultaneously

Figure 5.2 shows a drawing of the insertion device, vertically mounted on the OTR
radiation chamberA second device was mounted horizontallize reproducibility of the
movements was better than @ in translation and 021n rotation.
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FIGURE 5.2: Scheme of a motorized inseion device, mounted on a vacuum chamber
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5.1.2 Target holders

Figure5.4 shows drawings of the grating holders used in the Smith-Purcell experiments.
A vertical insertion device with grating holder 1 was used for Smith-Purcell and OTR
measurement3wo OTR foils could be mounted on the frarAeglass grating with triangular
profile was usedThe grating was protected against the bulk part of the electron beam by a
2 cm thick molybdenum shieldiné\ glass plate with the same dimensions as the grating was
used to estimate the contribution of Cherenkov radiation produced when the electrons hit th
grating.The vertical rotation axis of the device coincides with the grating grooves to permit an
angular adjustment between the electron beam and the grating surface. S&(&jdor the
geometry of the fst experiment.

A second insertion device was installed horizontally supporting grating holdéis2.
second experiment was designed to measure the wavelength and the polarization of the Smit
Purcell radiation produced when electrons are passing att@ dingle with respect to the
grating rulings.A glass grating with sinusoidal prefiwas used, with its surface being
perpendicular to the horizontal rotation axis. In this case, a precise, low-range angula
alignment of the electron beam with respect to the grating surface was obtained by adjustin
the beam trajectorysee Fig5.3(b) for the geometry of the second experiment.

A third experiment with similar geometry as in experinfemtas carried out, but using a
SiC grating A grating holder similar to grating holdémwas used, with two OTR foils and a
2 cm thick molybdenum shielding for the grating.

(a) (b) Wi

1Stlens of optical bench 1Stlens of optical bench

Experiment with an insertion device  Experiment with an insertion device
mounted vertically and grating holder Imounted horizontally and grating holde

FIGURE 5.3 : Principle of the two types of Smith-Pucell experiments.
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5.1.3 Gratings

In the frst two experiments, commercial gratings with 1808s/mm on a 3&36 mm?
glass substrate were ud@é]. They had a sinusoidal pridiand an echelette priafiwith
blazing angle of 2815, respectivelyThese gratings were replicas of master gratings.

Ruled master gratings are produced by evaporatifg aeoating onto a highly polished
substrate.The grooves are ruled using a diamond tool with the desired angle Epex.
mechanical set-up is of vital importance to obtain absolutely straight, parallel and equidistan
rulings.With this process, only piecewise linear grating peafan be produced (e.g. triangular
or trapezoidal gratings) and the production of such a master grating is a very time-consumin
process. Figs.5shows the principle of production of a mechanically ruled grating.

Holographic master gratings are produced in feidiht wayA highly polished substrate
is coated with a layer of photosensitive material and exposed to an interference pattern creat:
at the intersection of two coherent laser beams. Chemical treatment of the photosensitive lay
selectively dissolves the exposed areas producing the grodwes.interfering waves
determine the prdé of the grating, which can be either sinusoidal, lamellar or triandirar
evaporated metal coating is deposited on the surface to provide figénely Holographic
recorded gratings are of very high qualifye interference pattern recording technique leads
to a perfect periodicity with minimal grooves errors. Such gratings can be produced with a
very high groove density up to 6000 lines/mm and on vegelaubstrates. Figufe6 shows
the principal steps in the production of a master holographic grating.

Once a master grating has been manufactured it can be replicated to produce copies
the original. A highly polished blank is coated with an epoxy layer and sandwiched together
with the masteMhen the epoxy is cured, the master grating is separated from the rEpéica.
epoxy layer is then an exact copy of the master grating, which can be used again for anoth
replication process. Figute7 shows the process of replicating a master grating.

Tool with a
diamond head

Facet <4— Aluminum layer

*

Blank
FIGURE 5.5: The principle of production of a mechanically ruled masteechelette grating.
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FIGURE 5.6 : The principle of production of a masterholographic grating.
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I \I/
master
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epoxy resin master and replica of reflecting coating

FIGURE 5.7 : The principle of production of a replica grating.

The replica grating consists of a substrate, an epoxy layer anddingflcoating, which
makes it unsuitable for use in ultra high vacudie risk of thermal damage is also quite
important. In a Smith-Purcell experiment, it isfidifilt to avoid electrons hitting the surface of
the grating, due to thenite emittance of the electron beahie possible damage induced by
such electrons decelerated in the grating would limit the life-time of the gratiegeery thin
layer of refective material (mostly aluminium) deposited on the surface of the grating can
easily be evaporatedhe material of the substrate is also of great importance. Most of the
standard gratings are made out of glass {BKwhich is highly fragile. For all this reasons,
special precautions have to be taken when handling the grating in an electron beam.

Figures5.8 and5.9 show pictures of the surfaces of the sinusoidal and the ruled gratings
before use in the Smith-Purcell experiments, obtained with a scanning electron microscope
The two grating surfaces are not free from defects and small particles of dust are deposited ¢
the surfaces.
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FIGURE 5.8: A picture of the 1800/mm sinusoidal profile Jobin-Yvon grating before the
Smith-Purcell experiments.

Lem2@ak 0 49EES

FIGURE 5.9: A picture of the 1800/mm blazed Jobin-Yon grating before the Smith-
Purcell experiments.
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The third experiment was carried out using x50 mm? grating, ruled in a 10Am
SiC layer deposited on a h@m thick graphite block77]. The grating was produced with the
ion beam etching process: the surface |[@rafi a holographic recorded photoresishfgrating
is transferred onto the grating substraieion etching machine is used to ablate surface atoms
through the registered holographic maske technique allows to replicate a given groove
profile with nanometer accuraclkigure5.10 shows the steps of the production of a lamellar
ion etched grating

The fiat surface of 5@ 50 mmPwas divided into two part3.he frst half was not etched
and used as a plane mirror for OTR measurements (pahiesecond part was etched to give
a lamellar profe with parameters h/D=0.1 and a/D=0.5. During the fabrication process a
defect in the etching facility produced a fault in the lamellar jerodisulting in rounded upper
parts. Half of this part of the surface was left in this shape (part a) and the second half wa
etched again to give a triangular upper part (partThe radiator was then aluminized.
Figs.5.12describes the grating priefs.

Photoresist Reflection coating
Holographic lon etching Removal of Coating
recording photoresist

FIGURE 5.10 : Principle of production of an ion etched grating.

a b C A
50 mm
Y
-4—p» 13.5mm
-—p 245 mm
-y P 50 mm

FIGURE 5.11 : The custom SiC Zeiss radiatoused for Smith-Purcell and OTR experiments.
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FIGURE 5.12 : Profiles of the ion-etched gratings on the surface of the SiC radiator

5.1.4 Optical bench and data acquisition

The Smith-Purcell radiation produced at the GELIlécelerator was rather low in
intensity This was due to the very low beam current used in order to avoid damage to the
grating and because only very few electrons really interact, due to dgleesiae of the beam
(some millimeters to be compared with the interaction height of the orderuwh)lOn order
to be able to detect and characterize the radiation the OTR optical bench had to lmodifi
Only the intensikd camera was installefl.removable objective-lens allowed to focus either
at infinity to measure the OTR angular distribution (without objective) or to thettégrating,

Sic mirror or OTR foil) to capture a picture of the source. Figut8describes the new optical
bench.

The intensifed camera was a low-level camera LH4036-25 from Lhesa Electronique.
The detection block is an analyser tube type 3 Mmm from Thomson Electronics with a
S20ER photocathod§r8]. Each photoelectron produced by the photocathode is accelerated
up to 10keV and loses its engy in the silicon of the CCD where it creates by ionization 1500
to 2000 electron-hole pairghe typical sensitivity is 5.1 lux on the photocathode and the
typical spectral response extends from 400 tor880Figure5.14 gives the typical spectral
response of the photocathdd@®]. The spectral response isdarfor the visible (400-806m)
with a maximum near 55m (green) and decreases very fast in the-iné@ared range
(A>800nm).
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FIGURE 5.14 : Spectral response of the photocathode of the intengti CCD camera.
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The sensitivity of the camera could be adjusted by varying the voltage of the
photocathode. Figh.15shows the sensitivity curJ&8]. It varies slowly above BV, but very
fast for lower voltage.

In order to get reliable relative measurements, the camera was operated always at fu
sensitivity and calibrated graytérs in front of the camera were used to reduce the intensity
These fiers are made out of a metallic alloy coating vacuum-deposited on an optical-quality
glass (BK7) substrate and providatfspectral density curves over agkspectral range for
moderate optical densiti¢g9]. Figure5.16 shows the optical density curves characterizing
these gray fiers.
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FIGURE 5.16 : Density curves of the neutral gray fiers.

A set of calibrated interferencdtdrs operating with the same principle as the Fabry-
Perot interferometer was used to characterize the spectral distribution of the emittddhéght.
filters cover the visible spectrum from 400 to H@® in 50nm stepsThe bandwidth of the
filters is 10nm [79]. Figure5.17 shows the transmission of the interferomettters.

A dichroic sheet linear polarizer was used to measure the polarization of the emittec
radiation. It is made of a polymeric plastic, the molecules of which are oriented by stretching
thereby achieving birefringence. Pigment molecules are selectively attached to the ,polyme
leading to strong absorption of one of the two orthogonal states of polarization.

The image acquisition was done using a Macintosh IIfx computer equipped with a Data
Translation QuickCapture frame grahbEne Image software was used for image acquisition
and treatment. Image is a public domain program for the Macintosh for digital image
processing and analysis. It is fully compatible with other Macintosh applications and supports
many standard image processing functions, like histogram equalization, contrast enhancemel
density profing, smoothing, sharpening, etcThe images can be shading-corrected and
frame-averaged. Image also incorporates a Pascal-like macro programming language
providing the ability to automate complex, and frequently repetitive, processing tasks. It
supports the Datéranslation QuickCapture card for digitizing images usiiy a&amera.
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FIGURE 5.17 : Transmission curves of the 10m bandwidth interfer ometric filters.

5.2 First experiment: vertical insertion device and blazed grating

The frst experiment was done using a vertical insertion device equipped vg#ét tar
holder 1 on which several radiators were installe@do OTR foils were used to measure the
shape and the position of the beam.

The blazed grating with 1806mm described previously was used for the Smith-Purcell
measurementAs the substrate of this grating is made out of glass the contribution of
Cherenkov radiation produced by electrons hitting the grating could not be avoided. In order t
discriminate these two fetcts, a glass plate with same dimension as the grating was installed
on the taget holder and used in the same conditions as the grating.

Figure 5.18 shows a typical picture of the radiation produced by electrons of about
100MeV interacting with the blazed grating and observed with the intedsiimera, without
polarizer and withoutlter. The observation angle is 9@ith respect to beam direction and the
direction of the electron beam is from top to bottom.

The electron beam and the grating were positioned in such a way that a homogeneot
distribution of light along the grating surface was obser¥éds was not obtained when the
electron beam was coming parallel to the grating surface, but at a small angle of incidence ¢
6.5°. Therefore, the emitted radiation was not pure Smith-Purcell radiation. Bachh2oher
studied the case of almost parallel electrons of som&d¥Winteracting with optical gratings
and has shown that the characteristics of the emitted light were very similar to those of pur.
Smith-Purcell radiation.
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FIGURE 5.18 : Radiation of 100MeV electrons interacting with the glass blazed grating.

The small halo and the e saturated halo visible on top and bottom of the picture are
probably due to transition radiation and Cherenkov radiation produced by electrons penetratin
the gratingTheAl coating on the grating surface absorbs most of the radiation produced in the
glass, but the light can also be eeted by the tget holders and engs through the small
gap existing between the grating and the shielding and from the back side of the gsattireg.
camera observes at directiap=0°, (=0°) and as the electrons move perpendicularly to the
grating rulings, the following properties for pure Smith-Purcell radiation are expected:

1) the radiation wavelength should be 5588 (equatior( 1.39) with cy/vp=1, ¥1=0°,
n=0° and D=555.51m)

2) the radiation should be H-polarized (equat{ch17) to (1.20) with ¥,=0° and
(=0°).

5.2.1 Measurement of the polarization

Figure5.19 shows the polarization of the radiation measured fdvi88, 55MeV and
97 MeV electrons.The experimental points indicate the maximum intensity observed at the
grating surface as a function of the angular postiar the polarizerThe data were scaled to
the same value ai=90°. The line shows the intensity expected for a purely H-polarized
radiation.The experimental data follow the theoretical curve remarkably well, except hear 0
and 180. The low intensity observed for this state of polarization E-polarization) is
probably due to transition radiation or Cherenkov radiation escaping through ldyer on
the surface of the grating.
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FIGURE 5.20 : Polarization of light emitted by a glass grating and a glass plate interacting

with a 110 MeV electron beam.
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Fig. 5.20shows a comparison of the polarization of the radiation emitted by the grating
and the glass plate using 80MeV electron beaniThe curves have been scaled to the same
value at¢p=90°. The black line indicates the intensity expected for a purely H-polarized
radiation.The radiation emitted from the grating is almost purely H-polarized while the degree
of polarization for the light emitted by the glass plate is only 20%.

5.2.2 Measurement of the spectrum

The spectrum of the radiation was measured using the set of interferkace fi
Figure5.21 shows the spectra obtained usingl@ MeV electron beam interacting with the
blazed grating and with the glass pldtee data have been corrected for the transmission of
the fiters and the spectral sensitivity of the cathode cariénde the radiation emitted by the
glass plate covers a broad spectrum from 400 ton#@)Othe radiation observed from the
grating exhibits a narrow spectrum: almost all the intensity is concentrated nean 58te
curve for the glass light is simply a guide for the eyes. For the grating data, the curve is i
Gaussian centered at 555/ and fited to the data.
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FIGURE 5.21 : Spectra of light emitted by a glass plate and a glass grating interacting with a
110 MeV electron beam. Electon beam angle of incidence: 65
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5.2.3 Energy dependence of the radiation factor

The enegy dependence of the radiation factor was determined usirfd..B§). The
beam engy was measured using the magnetic gnemalyser and the beam current was
registered with the fast ferrite (cf. chapter B)e shape of the beam was measured using the
OTR radiators and Gaussians wettedi to the beam pradi. Figure5.22shows an example of
such a fi. The OTR picture of a 3MeV electron beam has been taken and a cut along the y-
axis (corresponding to the direction of the rulings of the grating) is pldttelbeam shape
can be well represented by a Gaussian lprofi

Fig. 5.23 shows the relative values of the radiation factr, (O, 0) \2 compared to
calculations carried out using techniques described in chapiée theoretical values were
scaled to the experimental data atNB®V. No attempt was made for a comparison on an
absolute scale, because the camera was not calibrated. In order to take into accoutat the fi
angle of incidence&b of the electron beam, E(1.88) has been integrated numerically over
the grating length considering an electron trajectory which is stepwise parallel to the grating
surface along one period Dhe divegence of the electron beam was not included in the
calculations.

The general trend in the eggrdependence of the radiation factor agrees well with the
predictions for Smith-Purcell radiatiod.he lage uncertainties in the experimental data
especially at low engies are mostly due to the bad signal-to-noise ratio because of the very
low current used in the experiment in order to avoid as much as possible damage to the gratin
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FIGURE 5.22 : Fit of the electron beam piofile at 30MeV (a) experimental data, (b)Gaussian
fit.
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FIGURE 5.23 : Energy dependence of the radiation factofor the blazed grating, as extracted
from the experimental data, compaed with the theortical energy
dependence.

Unfortunately no confimation of these results could be obtained during a second run in
January 1994 due to the destruction of the grating by the electron beam.5-ilsBows a
picture of the blazed grating obtained with a scanning electron microscope after the
experimentsThe surface of the grating has been damaged, probably by excessive heating
Characteristics of recrystallisation of tAkreflective layer can be seen and the grating rulings
have been partially destroyed.
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FIGURE 5.24 : A picture of the blazed grating afterexposue to the electon beam during
Smith-Purcell experiments.

5.3 Second experiment: horizontal insetion device and sinusoidal
grating

A second experiment was carried out with an insertion device mounted horizontally anc
a 1800/mm glass grating with sinusoidal prefi The confguration of the experiment as
described in paragraghl.2would allow a verittation of the theory developed in chapters 1
and 2 for Smith-Purcell radiation produced by electrons moving at an arbitrary angle with
respect to the grating rulingshis experiment has been carried out beginning October 1993,
after the fist experiment in September 1993. Unfortunatéhe sinusoidal grating was
destroyed before any observation could be ddhe.surface of the grating was destroyed at a
macroscopic scale, probably due to the melting of the epoxy layer deposited for the replicatiol
of a master grating (cf. secti@nl.3. Bubbles of gas have perforated Aldayer. Fig.5.25
shows a picture of the grating surface after the experiment, obtained with a scanning electrc
microscope at very low magrafition. The grating rulings were destroyed, probably by
recrystallisation of thé\l reflective layer Fig. 5.26 shows a picture of the grating surface
obtained with a scanning electron microscope at high megtii.
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FIGURE 5.25 : A picture at low magnifcation of the sinusoidal grating afterdestruction by
the election beam during Smith-Purcell experiments.

FIGURE 5.26 : A picture at high magnifcation of the sinusoidal grating afterdestruction by
the electron beam during Smith-Purcell experiments.
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5.4 Third experiment: vertical insertion device and SiC grating

This experiment was carried out during May 19940 SiC gratings with dierent
profiles (see paragrafhl.3 were usedThe radiation was measured as a function of the angle
of incidence® of the electron beam, with the observation amgfe® changing when the
grating was rotated (seatire5.3(a)). A theoretical mode]80] shows that in this case, the
dispersion relatioii 1.40) is replaced by:

M _ %o sb - si +S'<D 5.1
D V—oco sinn + - sin (5.1)

in which for relativistic electrons one hagg~1 and |s/k|~¥&<1. Therefore for an
observation anglg,;=®, one obtains:

nA LA

- = cosP - sin® = ﬁsin(z - ) (5.2)
Contrary to Smith-Purcell radiation, also positive orders can be observed®<BEbt

only negative orders are observed, whileda5° only positive orders appear

Figure 5.27 shows the intensity distribution as a function of the incidence ahgle
obtained using 88eV electrons. No dierence was observed between the two SiC gratings.
The open circles show the intensity observed withdtetr$i Curve (a) is a guide to the eye.
Curve (b) is the intensity observed using the SiC mifroe closed circles show from left to
right the intensity observed with interferendeefs of 550, 500 and 450m respectivelyThe
data have been corrected for the known transmission ofltérs,fbut not for the wavelength
dependent sensitivity of the detection system (optical bench and camera sensitivity). Curve (¢
is the sum of three Gaussians centered at afglescalculated using Eq.5.2) for the central
wavelengths of the bandpadsefis. The full width half maximum is given by a bandwidth
calculated for the angular aperture of the detection system usiq§Eqg.

The experimental data at 550, 500 and AB0agree fairly well with the theoretical
prediction, but the weakness of the signal lead welarror barsAccording to Eq( 5.2) in
first order n=-1 and at angl€s>15° only wavelength2i<400nm contribute, for which the
sensitivity of the detection system decreases drastiGaléyphotocathode of the camera is not
sensitive in the near Usnd the glass windows of the radiation chamber and the lenses of the
optical bench are not transparent in this spectral rafige=45°, the zero order n=0 is
observed and all wavelengths contributée radiation is very intense, comparable to
transition radiation observed from the SiC mirfdne spectra of the radiation emitted by the
SiC gratings and by the SiC mirror were identiddde angular distributions of the radiation
were very similar
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FIGURE 5.27 : Intensity distribution of light emitted fr om SiC grating as a function of the
incidence angle® with 85 MeV electrons. Open cicles: without filters. Closed
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to the eye, (b) intensity with a SiC mirpr, (c) theoretical predictions from
Eq. (5.2).

The polarization of the radiation was measured for several angles of incidence. In tha
measurement also no fdifence has been observed between the two SiC gratings. For low
angles of incidenc&b<15°, the radiation was purely H-polarized, as expected for Smith-
Purcell radiation atb=0°. No wavelength dependence was observed using the interference
filters. For the O-order &=45, the polarization was identical with that expected for OTR. No
dependence on the wavelength was noticed using the interferéerse Fig.5.28 shows the
intensity of the radiation ab=2° and®=45" as a function of the polarizer angleThe solid
line shows the intensity expected for a purely H-polarized radiation like pure Smith-Purcell
radiation emitted foid=0°. It has been scaled to the experimental data (closed circles) at
$=27C. The dashed line shows the constant intensity expected from transition radiation
emitted by a perfectly conducting surface for a non detr beanjll]. It has been scaled to
the experimental data (open circles)¢at90°. The experimental data agree well with the
theoretical predictions.
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The experiment was carried out for several electrongegebetween 20 tolD MeV.
The enegy dependence of the radiation was measured at low angles of incidettand at
®=45°. For ®=45°, the enagy dependence expected for OTR fromlat Burface was
obtained. For®<6°, the enggy dependence of the radiation was calculated from the observed
intensity assuming a Gaussian beam [@@f$ in sectioh.2

Fig. 5.29shows the results for low angles of incidenidee circles are the values of the
radiation factor derived from the intensity measure®<6° which all have shown the same
enegy dependencelhe curves are the same for the two SiC gratimps. solid line is the
enegy dependence of the radiation factor calculated for pure Smith-Purcell radiation from a
lamellar grating with period D=555r8m, and with parameters h/D=0.1 and a/D=0.5. Up to
70 MeV, the accordance of the experimental results and the theoretical curve istgugtier
enepies, lage discrepancies appediey could be explained by the fact that the grating
profile was actually not a rectangular plef{cf. Fig.5.12. Also the profie could had been
modified due to heating of the surface (like for the glass grating), even if no damage wa:s
visible after the experimentherefore calculations have also been carried out for a sinusoidal
grating with h/d=0.1 and for the grating pted described by Fi%.12 approximating the
profile by its Fourier transformThese calculations have shown a very similar ggner
dependence than for the lamellar gratig. conclude then that the discrepancies are probably
explained by the diérence between the theoretical model, which assumes parallel electrons
and the experimental cogftiration in which the electrons were coming at small itefi
incidence angles.
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FIGURE 5.29 : The energy dependence of the radiation @duced by elativistic electrons
interacting with a SiC grating at low angles of incidence. Cules: values of the
radiation factor at ®<6°. Curve: energy dependence of the radiation factor
calculated for pure Smith-Purcell radiation with a lamellar grating.

Fig. 5.30shows the results for a ¢gr angle of incidencdhe circles are the intensities
per unit current density observed at speculaecgin for ®=45°. No difference has been
noticed between the two SiC grating$e line is the theoretical emgrdependence of optical
transition radiation calculated taking into account the aperture of the optical Aespkcular
reflection the correspondence between the experimental points for the radiation emitted from
grating and the theoretical curve calculated for transition radiation fromat &utface is
excellent.
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FIGURE 5.30 : The energy dependence of the radiation duced by relativistic electrons
interacting with a SiC grating at an incidence angle of 45 Circles: measued
energy dependence. Curve: theetical energy dependence of OTR calculated
for the geomety of the experiment.

At specular refiction and ford=45" no difference in the polarization and eger
dependence has been observed between the transition radiation emitted by electrons hitting
flat surface and the radiation emitted by electrons hitting a grdtimg.result is surprising
because the characteristics of both surfaces aferadif and lead in optics to fifent
properties.As the grating difacts light, the refiction codiicient for the 0-orderwhich
corresponds to specular egftion is generally lower than for afflsurfaceAlso gratings have
generally very special polarization properties, for example Wesd-Rayleigh anomalies.
Such efects have not been observed yet in OTR experiments from gratings.
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CONCLUSIONS

This work is the result of a three years fellowship spent at the Institute for Reference
Materials and Measurements (IRMM), one institute of the Joint Research Centre of the Euro
pean Union, as a Ph.D. student from the Laboratoire des Systemes Photoniques, Universi
Louis PasteuStrasbouy. The frst part of this work had a theoretical dominance, while the
second part was mostly experimental using the GELiN&ar accelerator of the IRMM.

In the frst chaptera theoretical description in the frame of an electromagnetic theory of
the Smith-Purcell radiation produced by electrons moving parallel to a grating at an arbitrary
angle with respect to the grating rulings was propoBeetefore, this work is an extension of
the previous models assuming electrons moving perpendicular to the grating grbevietd
of the moving electron has been calculaethniques derived from the electromagnetic the-
ory of gratings have been applied to calculate the Smith-Purcell radiation intensity as a func
tion of the propagative waves fildcted by the grating and several properties of the Smith-
Purcell radiation have been establishEake calculation of the Smith-Purcelfedt is reduced
to the solution of a special grating problem involving an evanescent incident wave in a conica
mounting.The domain of validity of the model has been discussed. It is restricted to perfectly
conducting surface®\ three-dimensional theory of the Smith-Purcell radiation produced by
electrons moving at an arbitrary angle with respect to the rulings of a metallic or dielectric
grating remains to be developddhe case of electrons not moving parallel to the grating sur
face has been discussed. It has been shown that using relativistic electrons and gratgegs of lai
period, the alignment of the electron beam parallel to the grating surface andt¢hdiver
gence of the electron beam are not mandaidrgrefore, it should be fairly easy to generate
radiation in the fainfrared or millimeter range using the Smith-Purcdietf

In chapter two, some techniques to solve the grating problem have been adapted to tt
case of Smith-Purcell diiction and their domain of application has been investigated. For
rectangular gratings, the Modal Expansion Method is the most appropriate. For shallow sinu
soidal grating, the Rayleigh method is very powerful and gives exact results with moderate
computational dbrts. The Integral Method is the most general one and can be adapted to a
large variety of grating prdés. For all methods, reliable results are obtained when conver
gence is achieved and the power relations are sdti$tie reciprocity theorem for non-sym-
metric grating profes can also be used, but it is mordidifit to satisfy
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In chapter three, the previously exposed theories have been applied to calculate th
Smith-Purcell radiation produced by relativistic electrons withgner the 1 to 10MeV
range interacting with millimeter period gratings, leading to radiation in thaffared and
millimeter range, a spectral region where intense tunable sources are hardly avEiable.
characteristics of the radiation have been described for several shallow giidimgsuence
of the grating depth has been investigated for sinusoidal and rectangular gridtagsfu-
ence of tilting the electron beam trajectory with respect to the grating rulings on the radiatior
characteristics has been studi€de Smith-Purcell radiation produced byol10 MeV elec-
trons interacting with shallow lamellar or blazed gratings constitutes a good candidate fol
building sources based on the spontaneous emission by choosing the adequate experimer
parametersTherefore, the Smith-Purcellfett could be the basis of a new type of free elec-
tron lasers using low ergyr accelerators (some MeV) and gratings, but a detailed theory of
such devices remains to be written in this gneange.

For the frst time, high en@y electrons of 20 to1D MeV have been used to produce
radiation by interaction with optical gratings using the GELIfdéility. The results have been
exposed in chaptervi, in which the spectral and angular distributions, the polarization and
the dependence on the electron gpevere detailedAt small angle of incidence, the radiation
shows the main characteristics of Smith-Purcell radiafitve. polarization and wavelength
were in good agreement with the thedffie enegy dependence of the radiation factor was
compared to theoretical predictioAsfairly good agreement was obtained for the blazed glass
grating except at low electron egirs (below 4MeV). When using a SiC grating discrepan-
cies appear at high egggs (over 8MeV). These discrepancies probably point out the limits
of the model used for theoretical predictions, which does not take into accounttéharfgle
of incidence of the electron$he radiation intensity was weak, leading t@é&errors in the
measuresThis was due to the small beam current used for the experiments, in order to avoic
damage to the gratinglso very few electrons really interact with the grating, because of the
low interaction range, about 10n, and the laye size of the beam of several millimeters.
Therefore, the experiment should be repeated for another wavelength range or with a sme
emittance accelerator which would deliver a very narrow electron beam. In view of the theoret:
ical predictions, an accelerator of lower gyein the 1 to 10MeV range should be used.

An experiment to measure the radiation produced when the electrons hit the grating sui
face with a fnite incidence angle was carried cub. experimental comparison between transi-
tion radiation from a 8t surface and “transition radiation from a grating” has been attempted.
At the specular redlction and for an angle of incidence of 4the characteristics of the radia-
tion produced by electrons hitting a grating are very similar to those of optical transition radia-
tion produced when electrons hit a mirrdhe enegy dependence and the polarization were
identical at 400, 450, ..., 700n. It would be interesting to carry out this experiment with an
actual spectrometer to study more accurately the spectrum in order to looketds &ke
Wood-Rayleigh anomalies or wavelength-dependent polarization state offthetéelif waves,
which are well known in spectroscqpyut were not observed in these experiments.

A detailed study at the GELINfcility is foreseen when the new radiation physics lab-
oratory will be equipped and when the rejuvenation of the electron accelerator will be com-
pleted. The low emittance of the future accelerator combined with the detection facilities
which will be provided in the new laboratory should permit to improve and to complete the
results obtained up to now
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ABSTRACT

The Smith-Purcell ééct has been widely studied since its theoretical prediction in 1942
and its fist experimental confnation in 1953.The previous available models assume
electrons moving parallel to a grating surface and perpendicular to the grating rulings. In the
first chapterthe description of the Smith-Purcellfexft for electrons moving parallel to a
grating, at an arbitrary angle with respect to the grating rulings is exposed in the frame of an
electromagnetic theory

The model is restricted to perfectly conducting surfaces, for which some of the modern
available techniques to solve the grating problem are adapted to the peculguratioh of
the incident #&ld. These techniques are developed in the second chapter

In chapter three, the Smith-Purcell radiation produced by relativistic electrons with
enegy in the 1 to 10M0eV range interacting with millimeter period gratings is calculated,
using the previously developed theorigfe properties of the radiation are described and
possible applications are proposed.

In the fourth chaptethe GELINAfacility which was used to carry out Smith-Purcell
experiments is described.

In chapter fre, the Smith-Purcell experiments are descriliéet spectral and angular
distributions, the polarization and the dependence on the electrogy esfethe radiation
obtained by interaction of high egrelectrons of 20 to1D MeV with optical gratings in
various confyurations are presented.

KEYWORDS

Electromagnetism, Difaction, Grating, Electron acceleratoinfrared, Millimeter
waves, Smith-Purcell f&fct, Transition Radiation
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